EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Premium Composite Pavement Design Procedure

Download or read book Premium Composite Pavement Design Procedure written by Freddy L. Roberts and published by . This book was released on 1981 with total page 43 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Flexible and Composite Structures for Premium Pavements

Download or read book Flexible and Composite Structures for Premium Pavements written by and published by . This book was released on 1980 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This design manual presents the results of a detailed study to identify and design flexible and composite pavement configurations which will perform as premium or "zero-maintenance" pavements. This manual includes identification and classification of the pavement materials, design procedures for the selection of pavement configurations using wheel loads and environmental factors, and material and construction specifications' necessary to achieve a "zero-maintenance" pavement. Six primary types of paving materials have been selected for use in this manual: 1) dense grade asphalt concrete, 2) portland cement concrete, 3) cement and asphalt stabilized materials, 4) granular and crushed aggregates, 5) li~ and 6) pozzolanic materials"--Technical report documentation page.

Book Composite Pavement Systems

Download or read book Composite Pavement Systems written by Gerardo W. Flintsch and published by . This book was released on 2008 with total page 70 pages. Available in PDF, EPUB and Kindle. Book excerpt: Composite pavement systems have shown the potential for becoming a cost-effective pavement alternative for highways with high and heavy traffic volumes, especially in Europe. This study investigated the design and performance of composite pavement structures composed of a flexible layer (top-most layer) over a rigid base. The report compiles (1) a literature review of composite pavement systems in the U.S. and worldwide; (2) an evaluation of the state-of-the-practice in the U.S. obtained using a survey; (3) an investigation of technical aspects of various alternative composite pavement systems designed using available methodologies and mechanistic-empirical pavement distress models (fatigue, rutting, and reflective cracking); and (4) a preliminary life cycle cost analysis (LCCA) to study the feasibility of the most promising composite pavement systems. Composite pavements, when compared to traditional flexible or rigid pavements, have the potential to become a cost-effective alternative because they may provide better levels of performance, both structurally and functionally, than the traditional flexible and rigid pavement designs. Therefore, they can be viable options for high volume traffic corridors. Countries, such as the U.K. and Spain, which have used composite pavement systems in their main road networks, have reported positive experiences in terms of functional and structural performance. Composite pavement structures can provide long-life pavements that offer good serviceability levels and rapid, cost-effective maintenance operations, which are highly desired, especially for high-volume, high-priority corridors. Composite pavements mitigate various structural and functional problems that typical flexible or rigid pavements tend to present, such as hot-mix asphalt (HMA) fatigue cracking, subgrade rutting, portland cement concrete (PCC) erosion, and PCC loss of friction, among others. At the same time, though, composite systems are potentially more prone to other distresses, such as reflective cracking and rutting within the HMA layer. Premium HMA surfaces and/or reflective cracking mitigation techniques may be required to mitigate these potential problems. At the economic level, the results of the deterministic agency-cost LCCA suggest that the use of a composite pavement with a cement-treated base (CTB) results in a cost-effective alternative for a typical interstate traffic scenario. Alternatively, a composite pavement with a continuously reinforced concrete pavement (CRCP) base may become more cost-effective for very high volumes of traffic. Further, in addition to savings in agency cost, road user cost savings could also be important, especially for the HMA over CRCP composite pavement option because it would not require any lengthy rehabilitation actions, as is the case for the typical flexible and rigid pavements.

Book Composite Pavement Design

Download or read book Composite Pavement Design written by National Research Council (U.S.). Highway Research Board and published by . This book was released on 1963 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nine reports on composite pavement design for the 42nd Highway Research Board Annual Meeting, January 7-11, 1963.

Book Flexible and Composite Structures for Premium Pavements

Download or read book Flexible and Composite Structures for Premium Pavements written by and published by . This book was released on 1980 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This document provides results of a detailed study to identify flexible and composite structures which will perform as zero-maintenance pavements. To accomplish this, the report identifies the major distress types which have seriously limited the maintenance-free life of flexible and composite pavements, selects analytical models for use in a structural analysis for pavement structures, and develops design criteria for each distress type. A materials review was also completed to establish materials capable of satisfying the zero-maintenance criteria"--Technical report documentation page.

Book Composite Pavement Systems

Download or read book Composite Pavement Systems written by Shreenath P. Rao and published by Transportation Research Board. This book was released on 2013 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental composite pavements were constructed at MnROAD in Minnesota and the University of California Pavement Research Center at Davis, where the pavements were instrumented and monitored under climate and heavy traffic loadings. A composite pavement consisting of HMA over jointed plain concrete also was constructed in the field by the Illinois Tollway north of Chicago. At the Tollway, extensive field surveys were performed on 64 sections of the two types of composite pavements. This project also evaluated, improved, and further validated applicable structural, climatic, material, and performance prediction models, and design algorithms that are included in the AASHTO MEPDG and DARWin-ME, CalME, NCHRP 1-41 reflection cracking, NCHRP 9-30A rutting, and the Lattice bonding model. The current DARWin-ME overlay design procedure for HMA/PCC and a special R21 version of the Mechanistic-Empirical Pavement Design Guide (MEPDG [v.

Book Composite Pavement Design Procedure

Download or read book Composite Pavement Design Procedure written by J. S. Rao and published by . This book was released on 1987 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Composite Pavement Systems

Download or read book Composite Pavement Systems written by Shreenath P. Rao and published by Transportation Research Board. This book was released on 2013 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental composite pavements were constructed at MnROAD in Minnesota and the University of California Pavement Research Center at Davis, where the pavements were instrumented and monitored under climate and heavy traffic loadings. A composite pavement consisting of HMA over jointed plain concrete also was constructed in the field by the Illinois Tollway north of Chicago. At the Tollway, extensive field surveys were performed on 64 sections of the two types of composite pavements. This project also evaluated, improved, and further validated applicable structural, climatic, material, and performance prediction models, and design algorithms that are included in the AASHTO MEPDG and DARWin-ME, CalME, NCHRP 1-41 reflection cracking, NCHRP 9-30A rutting, and the Lattice bonding model. The current DARWin-ME overlay design procedure for HMA/PCC and a special R21 version of the Mechanistic-Empirical Pavement Design Guide (MEPDG [v.

Book Concrete Pavement Design Guidance Notes

Download or read book Concrete Pavement Design Guidance Notes written by Geoffrey Griffiths and published by CRC Press. This book was released on 2007-04-19 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive design guide summarizes current developments in the design of concrete pavements. Following an overview of the theory involved, the authors detail optimum design techniques and best practice, with a focus on highway and infrastructure projects. Worked examples and calculations are provided to describe standard design methods, illustrated with numerous case studies. The author provides guidance on how to use each method on particular projects, with reference to UK, European and US standards and codes of practice. Concrete Pavement Design Guidance Notes is an essential handbook for civil engineers, consultants and contractors involved in the design and construction of concrete pavements, and will also be of interest to students of pavement design.

Book Composite Pavement Systems

Download or read book Composite Pavement Systems written by and published by . This book was released on 2013 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Composite pavements have proved in Europe and the United States to have long service life with excellent surface characteristics, structural capacity, and rapid renewal when needed. Based on statistics compiled in 2000, approximately 30% of the urban interstate system and just over 20% of the rural interstate system is classified as "composite" pavement. In most cases the composite pavements are the result of maintenance and rehabilitation activities and not intentionally designed new composite pavement systems. This project developed the guidance needed to design and construct new composite pavement systems. The research determined the behavior, properties, and performance for both HMA/PCC and the PCC/PCC composite pavements under many climate and traffic conditions. Experimental composite pavements were constructed at MnROAD in Minnesota and the University of California Pavement Research Center at Davis, where the pavements were instrumented and monitored under climate and heavy traffic loadings. A composite pavement consisting of HMA over jointed plain concrete also was constructed in the field by the Illinois Tollway north of Chicago. At the Tollway, extensive field surveys were performed on 64 sections of the two types of composite pavements. This project also evaluated, improved, and further validated applicable structural, climatic, material, and performance prediction models, and design algorithms that are included in the AASHTO MEPDG and DARWin-ME, CalME, NCHRP 1-41 reflection cracking, NCHRP 9-30A rutting, and the Lattice bonding model. The current DARWin-ME overlay design procedure for HMA/PCC and a special R21 version of the Mechanistic-Empirical Pavement Design Guide (MEPDG [v. 1.3000:R21]) can be used for new PCC/PCC composite pavements. The key to the sustainable features of new composite pavements is the ability to use higher levels of recycled materials in the lower concrete layer. Additionally, the thickness of the lower concrete layer can be reduced when considering the insulating effect of the top pavement surface. Intentionally designed and constructed composite pavements will help highway agencies meet the goal of building economical, sustainable pavement structures that use higher levels of recycled materials and locally available materials"--Foreword.

Book Development of an Overlay Design Procedure for Composite Pavements

Download or read book Development of an Overlay Design Procedure for Composite Pavements written by Liangbo Hu and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The composite overlay design procedure currently used by ODOT sometimes produces very large overlay thicknesses that are deemed structurally unnecessary, especially for composite pavements already with thick asphalt overlays. This study was initiated to investigate the cause(s) and to develop a revised procedure. The current ODOT pavement overlay thickness design procedure is based on the structural deficiency approach recommended by the 1993 AASHTO Pavement Design Guide. The current procedure uses a simple, closed form procedure to back-calculate the subgrade modulus and the effective modulus of the existing pavement structure from the measured Falling Weight Deflectometer (FWD) surface deflections. The simplistic treatment of the AC and PCC layers as a combined layer in the back-calculation model was found to significantly underestimate the moduli of the existing pavement. A three-layer elastic model is adopted in lieu of the two-layer model used in the current procedure for back-calculation. The three-layer model allows the composite pavement structure to be modeled more accurately. The elastic moduli of the asphalt concrete layer and the underlying Portland cement concrete can both be back-calculated, instead of being combined as one. A revised overlay design procedure has been developed. A comparison of the revised procedure and the current procedure shows that the three-layer model produces higher effective thickness than the two-layer model for the same pavement structure. Therefore, the required overlay thickness is reduced. The revised design software has been implemented into a design software program, which also offers an optional feature that takes into consideration the temperature effects on the asphalt concrete moduli.

Book Mechanistic empirical Pavement Design Guide

Download or read book Mechanistic empirical Pavement Design Guide written by American Association of State Highway and Transportation Officials and published by AASHTO. This book was released on 2008 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Improving Design Strategies for Composite Pavement Overlay

Download or read book Improving Design Strategies for Composite Pavement Overlay written by Pawan Sigdel and published by . This book was released on 2016 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pavements need constant rehabilitation when they deteriorate with time and approach the end of their expected service lives. Overlay is the most prevalent treatment that restores its desirable condition and extends its life span of serviceability, especially for roads subjected to moderate and heavy traffic. Overlay composite design remains a major challenge due to difficulties in characterizing the complex behavior and assessing the existing condition of a combination of asphalt concrete (AC) and Portland cement concrete (PCC) layers over a soil subgrade. Deflection based design using falling weight deflectometer (FWD) deflection data offers an effective approach for overlay thickness design for composite pavements. It utilizes the deflection measurements of the pavement surface which can be used to back-calculate the subgrade and overlay composite properties and allows one to estimate the structural capacity of the existing pavement. However, the prevailing deflection based design procedure generally treats the AC and PCC as a single layer during the back-calculation and, as a result, frequently leads to less than satisfactory, usually over-conservative, design for overlay composites. The principal objective of this research is to develop improved FWD deflection based design strategies for overlay composite pavements. It is proposed that a three-layer linear elastic model be used for back-calculation of the moduli of all three layers: subgrade, PCC and AC. The structural capacity of the existing pavement is estimated using pavement surface deflections measured by FWD, the most commonly used pavement non-destructive testing (NDT) device. In the present study actual FWD deflection data for eleven construction projects are used to back-calculate the moduli of three layers. The three-layer model allows the composite pavement structure to be modeled more accurately. The elastic moduli of the asphalt concrete layer and the underlying Portland cement concrete can both be back-calculated, instead of combining them into one. The results show that the three-layer model produces higher effective thickness than the two-layer model for the same pavement structure, thereby reducing the required overlay thickness. However, there are a number of factors that can strongly influence the final overlay design thickness. The effects of computational error tolerances in back-calculation, temperature at FWD testing and variations in FWD deflection data are found significant and may cause unreliable design results and hence, two strategies to avoid excessively large or small back-calculated moduli are also explored: imposing moduli bounds and relaxing the precision convergence; they have been found very effective in mitigating the effect of large variations in deflection data. The statistical variations observed in the overlay design are also evaluated and two models are explored to improve the overall design procedure from the statistical perspective: Monte Carlo method and Point Estimation method. The effective thicknesses of existing pavement computed from reliability analysis are similar to those obtained from the proposed design method. This demonstrates the validity of the proposed design method and also the applicability of reliability based design in case the statistical parameters are available or can be obtained from engineering judgment.

Book AASHTO Guide for Design of Pavement Structures  1993

Download or read book AASHTO Guide for Design of Pavement Structures 1993 written by American Association of State Highway and Transportation Officials and published by AASHTO. This book was released on 1993 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.

Book An Objective Overlay Design Procedure for Composite Pavements

Download or read book An Objective Overlay Design Procedure for Composite Pavements written by Xinming Tang and published by . This book was released on 1995 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book COMPOSITE pavement design

Download or read book COMPOSITE pavement design written by and published by . This book was released on 1963 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Composite Pavement Systems

Download or read book Composite Pavement Systems written by and published by . This book was released on 2013 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Composite pavements have proved in Europe and the United States to have long service life with excellent surface characteristics, structural capacity, and rapid renewal when needed. Based on statistics compiled in 2000, approximately 30% of the urban interstate system and just over 20% of the rural interstate system is classified as "composite" pavement. In most cases the composite pavements are the result of maintenance and rehabilitation activities and not intentionally designed new composite pavement systems. This project developed the guidance needed to design and construct new composite pavement systems. The research determined the behavior, properties, and performance for both HMA/PCC and the PCC/PCC composite pavements under many climate and traffic conditions. Experimental composite pavements were constructed at MnROAD in Minnesota and the University of California Pavement Research Center at Davis, where the pavements were instrumented and monitored under climate and heavy traffic loadings. A composite pavement consisting of HMA over jointed plain concrete also was constructed in the field by the Illinois Tollway north of Chicago. At the Tollway, extensive field surveys were performed on 64 sections of the two types of composite pavements. This project also evaluated, improved, and further validated applicable structural, climatic, material, and performance prediction models, and design algorithms that are included in the AASHTO MEPDG and DARWin-ME, CalME, NCHRP 1-41 reflection cracking, NCHRP 9-30A rutting, and the Lattice bonding model. The current DARWin-ME overlay design procedure for HMA/PCC and a special R21 version of the Mechanistic-Empirical Pavement Design Guide (MEPDG [v. 1.3000:R21]) can be used for new PCC/PCC composite pavements. The key to the sustainable features of new composite pavements is the ability to use higher levels of recycled materials in the lower concrete layer. Additionally, the thickness of the lower concrete layer can be reduced when considering the insulating effect of the top pavement surface. Intentionally designed and constructed composite pavements will help highway agencies meet the goal of building economical, sustainable pavement structures that use higher levels of recycled materials and locally available materials"--Foreword.