EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Predictive Computational Materials Modeling with Machine Learning

Download or read book Predictive Computational Materials Modeling with Machine Learning written by Mashroor Shafat Nitol and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: [Abstract copied from the ETD PDF document].

Book Artificial Intelligence for Materials Science

Download or read book Artificial Intelligence for Materials Science written by Yuan Cheng and published by Springer Nature. This book was released on 2021-03-26 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning methods have lowered the cost of exploring new structures of unknown compounds, and can be used to predict reasonable expectations and subsequently validated by experimental results. As new insights and several elaborative tools have been developed for materials science and engineering in recent years, it is an appropriate time to present a book covering recent progress in this field. Searchable and interactive databases can promote research on emerging materials. Recently, databases containing a large number of high-quality materials properties for new advanced materials discovery have been developed. These approaches are set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic in the coming years. This authoritative and comprehensive book will be of interest to both existing researchers in this field as well as others in the materials science community who wish to take advantage of these powerful techniques. The book offers a global spread of authors, from USA, Canada, UK, Japan, France, Russia, China and Singapore, who are all world recognized experts in their separate areas. With content relevant to both academic and commercial points of view, and offering an accessible overview of recent progress and potential future directions, the book will interest graduate students, postgraduate researchers, and consultants and industrial engineers.

Book Materials Informatics

Download or read book Materials Informatics written by Olexandr Isayev and published by John Wiley & Sons. This book was released on 2019-08-14 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides everything readers need to know for applying the power of informatics to materials science There is a tremendous interest in materials informatics and application of data mining to materials science. This book is a one-stop guide to the latest advances in these emerging fields. Bridging the gap between materials science and informatics, it introduces readers to up-to-date data mining and machine learning methods. It also provides an overview of state-of-the-art software and tools. Case studies illustrate the power of materials informatics in guiding the experimental discovery of new materials. Materials Informatics: Methods, Tools and Applications is presented in two parts?Methodological Aspects of Materials Informatics and Practical Aspects and Applications. The first part focuses on developments in software, databases, and high-throughput computational activities. Chapter topics include open quantum materials databases; the ICSD database; open crystallography databases; and more. The second addresses the latest developments in data mining and machine learning for materials science. Its chapters cover genetic algorithms and crystal structure prediction; MQSPR modeling in materials informatics; prediction of materials properties; amongst others. -Bridges the gap between materials science and informatics -Covers all the known methodologies and applications of materials informatics -Presents case studies that illustrate the power of materials informatics in guiding the experimental quest for new materials -Examines the state-of-the-art software and tools being used today Materials Informatics: Methods, Tools and Applications is a must-have resource for materials scientists, chemists, and engineers interested in the methods of materials informatics.

Book Machine Learning in Chemistry

Download or read book Machine Learning in Chemistry written by Hugh M. Cartwright and published by Royal Society of Chemistry. This book was released on 2020-07-15 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Progress in the application of machine learning (ML) to the physical and life sciences has been rapid. A decade ago, the method was mainly of interest to those in computer science departments, but more recently ML tools have been developed that show significant potential across wide areas of science. There is a growing consensus that ML software, and related areas of artificial intelligence, may, in due course, become as fundamental to scientific research as computers themselves. Yet a perception remains that ML is obscure or esoteric, that only computer scientists can really understand it, and that few meaningful applications in scientific research exist. This book challenges that view. With contributions from leading research groups, it presents in-depth examples to illustrate how ML can be applied to real chemical problems. Through these examples, the reader can both gain a feel for what ML can and cannot (so far) achieve, and also identify characteristics that might make a problem in physical science amenable to a ML approach. This text is a valuable resource for scientists who are intrigued by the power of machine learning and want to learn more about how it can be applied in their own field.

Book Reviews in Computational Chemistry  Volume 29

Download or read book Reviews in Computational Chemistry Volume 29 written by Abby L. Parrill and published by John Wiley & Sons. This book was released on 2016-04-11 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Reviews in Computational Chemistry series brings together leading authorities in the field to teach the newcomer and update the expert on topics centered on molecular modeling, such as computer-assisted molecular design (CAMD), quantum chemistry, molecular mechanics and dynamics, and quantitative structure-activity relationships (QSAR). This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Topics in Volume 29 include: Noncovalent Interactions in Density-Functional Theory Long-Range Inter-Particle Interactions: Insights from Molecular Quantum Electrodynamics (QED) Theory Efficient Transition-State Modeling using Molecular Mechanics Force Fields for the Everyday Chemist Machine Learning in Materials Science: Recent Progress and Emerging Applications Discovering New Materials via a priori Crystal Structure Prediction Introduction to Maximally Localized Wannier Functions Methods for a Rapid and Automated Description of Proteins: Protein Structure, Protein Similarity, and Protein Folding

Book Machine Learning for Polymer Informatics

Download or read book Machine Learning for Polymer Informatics written by Ying Li and published by American Chemical Society. This book was released on 2024-06-28 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning has significantly accelerated the development of new polymer materials. Machine Learning for Polymer Informatics introduces the reader to the most popular ways of applying machine learning in polymer informatics. This primer will equip the reader to ask the right questions about the application of machine learning in their areas of interest, as well as critically interpret publications leveraging machine learning methods. The authors encourage readers to try machine learning techniques when they have sufficient data in their area of interest. The development of machine learning has far exceeded human imagination, and with sufficient data, everything is full of possibilities.

Book Advanced Computational Materials Modeling

Download or read book Advanced Computational Materials Modeling written by Miguel Vaz Junior and published by John Wiley & Sons. This book was released on 2011-09-22 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its discussion of strategies for modeling complex materials using new numerical techniques, mainly those based on the finite element method, this monograph covers a range of topics including computational plasticity, multi-scale formulations, optimization and parameter identification, damage mechanics and nonlinear finite elements.

Book Accelerated Design of Disordered Materials by Computational Simulation and Machine Learning

Download or read book Accelerated Design of Disordered Materials by Computational Simulation and Machine Learning written by Han Liu and published by . This book was released on 2021 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials modeling is revolutionizing materials discovery paradigms through rationalizing the exploration of vast material design space. In general, materials modeling is built upon certain physics laws (e.g., computational simulations) and/or experimental data (e.g., machine learning). However, the state-of-the-art materials modeling is facing two grand challenges, i.e., (i) the high complexity of physics laws that govern materials properties, and (ii) the low informativity of experimental data. In order to address the two grand challenges of materials modeling, next-generation materials modeling aims to (i) make the physics simple to facilitate physics-driven modeling, and (ii) make the data informative to facilitate data-driven modeling.This thesis highlights the unparallel predictive power of integrating data-driven machine learning (ML) and physics-driven computational simulations to unlock a new era for materials discovery and for next-generation materials modeling: On the one hand, ML can assist in (i) developing empirical forcefields for accurate and computationally-efficient simulations, (ii) "separating the wheat from the chaff" in large amounts of complex simulation data to gain new insights or generate new knowledge of the underlying physics governing materials behaviors, and (iii) accelerating simulations by surrogate machine learning engines. On the other hand, simulation can generate large amounts of high-fidelity data that can be used to train machine learning models, which, in turn, can be validated by simulations. Both simulations and their integration pipeline with ML can be accelerated by leveraging automated differentiable programming engines and hardware accelerators. Overall, I envision that the "fusion" of simulations and ML models will unlock a new era in materials modeling-wherein traditional boundaries between physics and empirical models, knowledge and data, forward and inverse predictions, or experimental and simulation data would eventually fade. I hope that the present thesis will modestly contribute to stimulating new developments in that direction.

Book Computational Technologies in Materials Science

Download or read book Computational Technologies in Materials Science written by Shubham Tayal and published by CRC Press. This book was released on 2021-10-06 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: • Covers material testing and development using computational intelligence • Highlights the technologies to integrate computational intelligence and materials sciences • Discusses how computational tools can generate new materials with advanced applications • Details case studies and detailed applications • Investigates challenges in developing and using computational intelligence in materials science • Analyzes historic changes that are taking place in designing of materials

Book Applied Computational Materials Modeling

Download or read book Applied Computational Materials Modeling written by Guillermo Bozzolo and published by Springer Science & Business Media. This book was released on 2007-12-19 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: The scope of this book is to identify and emphasize the successful link between computational materials modeling as a simulation and design tool and its synergistic application to experimental research and alloy development. The book provides a more balanced perspective of the role that computational modeling can play in every day research and development efforts. Each chapter describes one or more particular computational tool and how they are best used.

Book Multiscale Paradigms in Integrated Computational Materials Science and Engineering

Download or read book Multiscale Paradigms in Integrated Computational Materials Science and Engineering written by Pierre Deymier and published by Springer. This book was released on 2015-11-25 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents cutting-edge concepts, paradigms, and research highlights in the field of computational materials science and engineering, and provides a fresh, up-to-date perspective on solving present and future materials challenges. The chapters are written by not only pioneers in the fields of computational materials chemistry and materials science, but also experts in multi-scale modeling and simulation as applied to materials engineering. Pedagogical introductions to the different topics and continuity between the chapters are provided to ensure the appeal to a broad audience and to address the applicability of integrated computational materials science and engineering for solving real-world problems.

Book Materials Discovery and Design

Download or read book Materials Discovery and Design written by Turab Lookman and published by Springer. This book was released on 2018-09-22 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.

Book Information Science for Materials Discovery and Design

Download or read book Information Science for Materials Discovery and Design written by Turab Lookman and published by Springer. This book was released on 2015-12-12 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a “fourth leg’’ to our toolkit to make the “Materials Genome'' a reality, the science of Materials Informatics.

Book Machine Learning  Low Rank Approximations and Reduced Order Modeling in Computational Mechanics

Download or read book Machine Learning Low Rank Approximations and Reduced Order Modeling in Computational Mechanics written by Felix Fritzen and published by MDPI. This book was released on 2019-09-18 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of machine learning in mechanics is booming. Algorithms inspired by developments in the field of artificial intelligence today cover increasingly varied fields of application. This book illustrates recent results on coupling machine learning with computational mechanics, particularly for the construction of surrogate models or reduced order models. The articles contained in this compilation were presented at the EUROMECH Colloquium 597, « Reduced Order Modeling in Mechanics of Materials », held in Bad Herrenalb, Germany, from August 28th to August 31th 2018. In this book, Artificial Neural Networks are coupled to physics-based models. The tensor format of simulation data is exploited in surrogate models or for data pruning. Various reduced order models are proposed via machine learning strategies applied to simulation data. Since reduced order models have specific approximation errors, error estimators are also proposed in this book. The proposed numerical examples are very close to engineering problems. The reader would find this book to be a useful reference in identifying progress in machine learning and reduced order modeling for computational mechanics.

Book Computational Materials Discovery

Download or read book Computational Materials Discovery written by Artem Oganov and published by Royal Society of Chemistry. This book was released on 2018-10-30 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique and timely book providing an overview of both the methodologies and applications of computational materials design.

Book Fundamentals of Machine Learning for Predictive Data Analytics  second edition

Download or read book Fundamentals of Machine Learning for Predictive Data Analytics second edition written by John D. Kelleher and published by MIT Press. This book was released on 2020-10-20 with total page 853 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.

Book Computational Technologies in Materials Science

Download or read book Computational Technologies in Materials Science written by Shubham Tayal and published by CRC Press. This book was released on 2021-10-06 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: • Covers material testing and development using computational intelligence • Highlights the technologies to integrate computational intelligence and materials sciences • Discusses how computational tools can generate new materials with advanced applications • Details case studies and detailed applications • Investigates challenges in developing and using computational intelligence in materials science • Analyzes historic changes that are taking place in designing of materials