Download or read book Handbook of Research on Advances in Data Analytics and Complex Communication Networks written by P. Venkata Krishna and published by IGI Global. This book was released on 2021 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This edited book discusses data analytics and complex communication networks and recommends new methodologies, system architectures, and other solutions to prevail over the current limitations faced by the field"--
Download or read book HOUSE PRICE ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-02-20 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dataset used in this project is taken from the second chapter of Aurélien Géron's recent book 'Hands-On Machine learning with Scikit-Learn and TensorFlow'. It serves as an excellent introduction to implementing machine learning algorithms because it requires rudimentary data cleaning, has an easily understandable list of variables and sits at an optimal size between being to toyish and too cumbersome. The data contains information from the 1990 California census. Although it may not help you with predicting current housing prices like the Zillow Zestimate dataset, it does provide an accessible introductory dataset for teaching people about the basics of machine learning. The data pertains to the houses found in a given California district and some summary stats about them based on the 1990 census data. Be warned the data aren't cleaned so there are some preprocessing steps required! The columns are as follows: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, median_house_value, and ocean_proximity. The machine learning models used in this project used to perform regression on median_house_value and to predict it as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.
Download or read book 2020 International Conference on Electronics and Sustainable Communication Systems ICESC written by IEEE Staff and published by . This book was released on 2020-07-02 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: International conference on Electronics and Sustainable Communication Systems (ICESC 2020) is one of the eminent conferences organized by Hindustan Institute of Technology, Coimbatore, India dedicated to drive innovation in nearly every aspect of electronic and communication systems The primary aim of ICESC 2020 is to promote the high quality and sustainable research works in an international platform of scientists, researchers, and industrialists by bringing together the state of the art research work in different facets of electronics and communication systems and discuss, share and exchange the research ideas under one common platform Prospective authors are invited to contribute and address different themes and topics of the conference
Download or read book Emerging Technologies in Data Mining and Information Security written by João Manuel R. S. Tavares and published by Springer Nature. This book was released on 2021-05-04 with total page 994 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features research papers presented at the International Conference on Emerging Technologies in Data Mining and Information Security (IEMIS 2020) held at the University of Engineering & Management, Kolkata, India, during July 2020. The book is organized in three volumes and includes high-quality research work by academicians and industrial experts in the field of computing and communication, including full-length papers, research-in-progress papers, and case studies related to all the areas of data mining, machine learning, Internet of things (IoT), and information security.
Download or read book Intelligent Manufacturing Systems in Industry 4 0 written by B. B. V. L. Deepak and published by Springer Nature. This book was released on 2023-06-30 with total page 713 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the select proceedings of the 4th International Conference on Innovative Product Design and Intelligent Manufacturing System (IPDIMS 2022). It covers the latest trends in the areas of design and manufacturing. The main topics covered include Industry 4.0, smart manufacturing, advanced robotics, and CAD/CAM/CIM. The contents of this book are useful for researchers and professionals working in the disciplines of mechatronics, mechanical, manufacturing, production, and industrial engineering.
Download or read book Interpretable Machine Learning written by Christoph Molnar and published by Lulu.com. This book was released on 2020 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.
Download or read book Computational Intelligence for Modern Business Systems written by Sandeep Kautish and published by Springer Nature. This book was released on 2023-12-05 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the applications of computational intelligence techniques in business systems and advocates how these techniques are useful in modern business operations. The book redefines the computational intelligence foundations, the three pillars - neural networks, evolutionary computation, and fuzzy systems. It also discusses emerging areas such as swarm intelligence, artificial immune systems (AIS), support vector machines, rough sets, and chaotic systems. The other areas have also been demystified in the book to strengthen the range of computational intelligence techniques such as expert systems, knowledge-based systems, and genetic algorithms. Therefore, this book will redefine the role of computational intelligence techniques in modern business system operations such as marketing, finance & accounts, operations, personnel management, supply chain management, and logistics. Besides, this book guides the readers through using them to model, discover, and interpret new patterns that cannot be found through statistical methods alone in various business system operations. This book reveals how computational intelligence can inform the design and integration of services, architecture, brand identity, and product portfolio across the entire enterprise. The book will provide insights into research gaps, open challenges, and unsolved computational intelligence problems. The book will act as a premier reference and instant material for all the users who are contributing/practicing the adaptation of computational intelligence modern techniques in business systems.
Download or read book Artificial Intelligence with Python Cookbook written by Ben Auffarth and published by Packt Publishing Ltd. This book was released on 2020-10-30 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Work through practical recipes to learn how to solve complex machine learning and deep learning problems using Python Key FeaturesGet up and running with artificial intelligence in no time using hands-on problem-solving recipesExplore popular Python libraries and tools to build AI solutions for images, text, sounds, and imagesImplement NLP, reinforcement learning, deep learning, GANs, Monte-Carlo tree search, and much moreBook Description Artificial intelligence (AI) plays an integral role in automating problem-solving. This involves predicting and classifying data and training agents to execute tasks successfully. This book will teach you how to solve complex problems with the help of independent and insightful recipes ranging from the essentials to advanced methods that have just come out of research. Artificial Intelligence with Python Cookbook starts by showing you how to set up your Python environment and taking you through the fundamentals of data exploration. Moving ahead, you’ll be able to implement heuristic search techniques and genetic algorithms. In addition to this, you'll apply probabilistic models, constraint optimization, and reinforcement learning. As you advance through the book, you'll build deep learning models for text, images, video, and audio, and then delve into algorithmic bias, style transfer, music generation, and AI use cases in the healthcare and insurance industries. Throughout the book, you’ll learn about a variety of tools for problem-solving and gain the knowledge needed to effectively approach complex problems. By the end of this book on AI, you will have the skills you need to write AI and machine learning algorithms, test them, and deploy them for production. What you will learnImplement data preprocessing steps and optimize model hyperparametersDelve into representational learning with adversarial autoencodersUse active learning, recommenders, knowledge embedding, and SAT solversGet to grips with probabilistic modeling with TensorFlow probabilityRun object detection, text-to-speech conversion, and text and music generationApply swarm algorithms, multi-agent systems, and graph networksGo from proof of concept to production by deploying models as microservicesUnderstand how to use modern AI in practiceWho this book is for This AI machine learning book is for Python developers, data scientists, machine learning engineers, and deep learning practitioners who want to learn how to build artificial intelligence solutions with easy-to-follow recipes. You’ll also find this book useful if you’re looking for state-of-the-art solutions to perform different machine learning tasks in various use cases. Basic working knowledge of the Python programming language and machine learning concepts will help you to work with code effectively in this book.
Download or read book Electronic Governance with Emerging Technologies written by Fernando Ortiz-Rodríguez and published by Springer Nature. This book was released on 2023-10-17 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Conference on Electronic Governance with Emerging Technologies, EGETC 2023, held in Poznan, Poland, during September 11–12, 2023. The 15 full papers and one short paper presented were thoroughly reviewed and selected from the 76 submissions. This volume focuses on the recent developments in the domain of eGovernment and governance of digital organizations also aims to shed light on the emerging research trends and their applications.
Download or read book Data Mining in Agriculture written by Antonio Mucherino and published by Springer Science & Business Media. This book was released on 2009-09-22 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining in Agriculture represents a comprehensive effort to provide graduate students and researchers with an analytical text on data mining techniques applied to agriculture and environmental related fields. This book presents both theoretical and practical insights with a focus on presenting the context of each data mining technique rather intuitively with ample concrete examples represented graphically and with algorithms written in MATLAB®.
Download or read book Data Labeling in Machine Learning with Python written by Vijaya Kumar Suda and published by Packt Publishing Ltd. This book was released on 2024-01-31 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Take your data preparation, machine learning, and GenAI skills to the next level by learning a range of Python algorithms and tools for data labeling Key Features Generate labels for regression in scenarios with limited training data Apply generative AI and large language models (LLMs) to explore and label text data Leverage Python libraries for image, video, and audio data analysis and data labeling Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionData labeling is the invisible hand that guides the power of artificial intelligence and machine learning. In today’s data-driven world, mastering data labeling is not just an advantage, it’s a necessity. Data Labeling in Machine Learning with Python empowers you to unearth value from raw data, create intelligent systems, and influence the course of technological evolution. With this book, you'll discover the art of employing summary statistics, weak supervision, programmatic rules, and heuristics to assign labels to unlabeled training data programmatically. As you progress, you'll be able to enhance your datasets by mastering the intricacies of semi-supervised learning and data augmentation. Venturing further into the data landscape, you'll immerse yourself in the annotation of image, video, and audio data, harnessing the power of Python libraries such as seaborn, matplotlib, cv2, librosa, openai, and langchain. With hands-on guidance and practical examples, you'll gain proficiency in annotating diverse data types effectively. By the end of this book, you’ll have the practical expertise to programmatically label diverse data types and enhance datasets, unlocking the full potential of your data.What you will learn Excel in exploratory data analysis (EDA) for tabular, text, audio, video, and image data Understand how to use Python libraries to apply rules to label raw data Discover data augmentation techniques for adding classification labels Leverage K-means clustering to classify unsupervised data Explore how hybrid supervised learning is applied to add labels for classification Master text data classification with generative AI Detect objects and classify images with OpenCV and YOLO Uncover a range of techniques and resources for data annotation Who this book is for This book is for machine learning engineers, data scientists, and data engineers who want to learn data labeling methods and algorithms for model training. Data enthusiasts and Python developers will be able to use this book to learn data exploration and annotation using Python libraries. Basic Python knowledge is beneficial but not necessary to get started.
Download or read book ICDSMLA 2019 written by Amit Kumar and published by Springer Nature. This book was released on 2020-05-19 with total page 2010 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gathers selected high-impact articles from the 1st International Conference on Data Science, Machine Learning & Applications 2019. It highlights the latest developments in the areas of Artificial Intelligence, Machine Learning, Soft Computing, Human–Computer Interaction and various data science & machine learning applications. It brings together scientists and researchers from different universities and industries around the world to showcase a broad range of perspectives, practices and technical expertise.
Download or read book Practical Machine Learning for Data Analysis Using Python written by Abdulhamit Subasi and published by Academic Press. This book was released on 2020-06-05 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features
Download or read book Python programming for Data Scientists written by Editor IJSMI and published by International Journal of Statistics and Medical Informatics. This book was released on 2019-11-15 with total page 101 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python programming language is an open source programming language which can be used under different operating system. Python programming redefined the programming concepts with its important features like flexibility, adaptability and reusability of codes. Python programming language has numerous libraries or modules which helps the programmer to save their time. The book starts with the overview of basic Python topics such as data structures, data types, conditions and controls, functions, lists, file handling and handling external datasets and database connections. The book also covers the topics in data science such as graphical and chart visualization, statistical modeling, text mining and machine learning algorithms. The book uses popular libraries of Python like matplotlib, sciket-learn and numpy, to perform graphical and machine learning related tasks. Users are encouraged to refer to the author’s book on “Machine Learning: An overview with the help of R software package” (ISBN- 978-1790122622) if they are familiar with R software package which is also an open source package The book requires users to download the Python version 3.0 and any of the Integrated Development Environments (IDE) such as Liclipse, Wing,PyCharm and Eric. Editor International Journal of Statistics and Medical Informatics www.ijsmi.com/book.php https://www.amazon.com/dp/1708620281(Paper Back) https://www.amazon.com/DP/B081K1SD4K (e-Book)
Download or read book Practical Machine Learning with Python written by Dipanjan Sarkar and published by Apress. This book was released on 2017-12-20 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries and frameworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students
Download or read book REGRESSION SEGMENTATION CLUSTERING AND PREDICTION PROJECTS WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-02-25 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: PROJECT 1: TIME-SERIES WEATHER: FORECASTING AND PREDICTION WITH PYTHON Weather data are described and quantified by the variables of Earth's atmosphere: temperature, air pressure, humidity, and the variations and interactions of these variables, and how they change over time. Different spatial scales are used to describe and predict weather on local, regional, and global levels. The dataset used in this project contains weather data for New Delhi, India. This data was taken out from wunderground. It contains various features such as temperature, pressure, humidity, rain, precipitation, etc. The main target is to develop a prediction model accurate enough for forecasting temperature and predicting target variable (condition). Time-series weather forecasting will be done using ARIMA models. The machine learning models used in this project to predict target variable (condition) are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: HOUSE PRICE: ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON The dataset used in this project is taken from the second chapter of Aurélien Géron's recent book 'Hands-On Machine learning with Scikit-Learn and TensorFlow'. It serves as an excellent introduction to implementing machine learning algorithms because it requires rudimentary data cleaning, has an easily understandable list of variables and sits at an optimal size between being to toyish and too cumbersome. The data contains information from the 1990 California census. Although it may not help you with predicting current housing prices like the Zillow Zestimate dataset, it does provide an accessible introductory dataset for teaching people about the basics of machine learning. The data pertains to the houses found in a given California district and some summary stats about them based on the 1990 census data. Be warned the data aren't cleaned so there are some preprocessing steps required! The columns are as follows: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, median_house_value, and ocean_proximity. The machine learning models used in this project used to perform regression on median_house_value and to predict it as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: CUSTOMER PERSONALITY ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON Customer Personality Analysis is a detailed analysis of a company’s ideal customers. It helps a business to better understand its customers and makes it easier for them to modify products according to the specific needs, behaviors and concerns of different types of customers. Customer personality analysis helps a business to modify its product based on its target customers from different types of customer segments. For example, instead of spending money to market a new product to every customer in the company’s database, a company can analyze which customer segment is most likely to buy the product and then market the product only on that particular segment. Following are the features in the dataset: ID = Customer's unique identifier; Year_Birth = Customer's birth year; Education = Customer's education level; Marital_Status = Customer's marital status; Income = Customer's yearly household income; Kidhome = Number of children in customer's household; Teenhome = Number of teenagers in customer's household; Dt_Customer = Date of customer's enrollment with the company; Recency = Number of days since customer's last purchase; MntWines = Amount spent on wine in the last 2 years; MntFruits = Amount spent on fruits in the last 2 years; MntMeatProducts = Amount spent on meat in the last 2 years; MntFishProducts = Amount spent on fish in the last 2 years; MntSweetProducts = Amount spent on sweets in the last 2 years; MntGoldProds = Amount spent on gold in the last 2 years; NumDealsPurchases = Number of purchases made with a discount; NumWebPurchases = Number of purchases made through the company's web site; NumCatalogPurchases = Number of purchases made using a catalogue; NumStorePurchases = Number of purchases made directly in stores; NumWebVisitsMonth = Number of visits to company's web site in the last month; AcceptedCmp3 = 1 if customer accepted the offer in the 3rd campaign, 0 otherwise; AcceptedCmp4 = 1 if customer accepted the offer in the 4th campaign, 0 otherwise; AcceptedCmp5 = 1 if customer accepted the offer in the 5th campaign, 0 otherwise; AcceptedCmp1 = 1 if customer accepted the offer in the 1st campaign, 0 otherwise; AcceptedCmp2 = 1 if customer accepted the offer in the 2nd campaign, 0 otherwise; Response = 1 if customer accepted the offer in the last campaign, 0 otherwise; and Complain = 1 if customer complained in the last 2 years, 0 otherwise. The target in this project is to perform clustering and predicting to summarize customer segments. In this project, you will perform clustering using KMeans to get 4 clusters. The machine learning models used in this project to perform regression on total number of purchase and to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: CUSTOMER SEGMENTATION, CLUSTERING, AND PREDICTION WITH PYTHON In this project, you will develop a customer segmentation, clustering, and prediction to define marketing strategy. The sample dataset summarizes the usage behavior of about 9000 active credit card holders during the last 6 months. The file is at a customer level with 18 behavioral variables. Following is the Data Dictionary for Credit Card dataset: CUSTID: Identification of Credit Card holder (Categorical); BALANCE: Balance amount left in their account to make purchases; BALANCEFREQUENCY: How frequently the Balance is updated, score between 0 and 1 (1 = frequently updated, 0 = not frequently updated); PURCHASES: Amount of purchases made from account; ONEOFFPURCHASES: Maximum purchase amount done in one-go; INSTALLMENTSPURCHASES: Amount of purchase done in installment; CASHADVANCE: Cash in advance given by the user; PURCHASESFREQUENCY: How frequently the Purchases are being made, score between 0 and 1 (1 = frequently purchased, 0 = not frequently purchased); ONEOFFPURCHASESFREQUENCY: How frequently Purchases are happening in one-go (1 = frequently purchased, 0 = not frequently purchased); PURCHASESINSTALLMENTSFREQUENCY: How frequently purchases in installments are being done (1 = frequently done, 0 = not frequently done); CASHADVANCEFREQUENCY: How frequently the cash in advance being paid; CASHADVANCETRX: Number of Transactions made with "Cash in Advanced"; PURCHASESTRX: Number of purchase transactions made; CREDITLIMIT: Limit of Credit Card for user; PAYMENTS: Amount of Payment done by user; MINIMUM_PAYMENTS: Minimum amount of payments made by user; PRCFULLPAYMENT: Percent of full payment paid by user; and TENURE: Tenure of credit card service for user. In this project, you will perform clustering using KMeans to get 5 clusters. The machine learning models used in this project to perform regression on total number of purchase and to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.
Download or read book Python Machine Learning written by Wei-Meng Lee and published by John Wiley & Sons. This book was released on 2019-04-04 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python makes machine learning easy for beginners and experienced developers With computing power increasing exponentially and costs decreasing at the same time, there is no better time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. However, machine learning is not for the faint of heart—it requires a good foundation in statistics, as well as programming knowledge. Python Machine Learning will help coders of all levels master one of the most in-demand programming skillsets in use today. Readers will get started by following fundamental topics such as an introduction to Machine Learning and Data Science. For each learning algorithm, readers will use a real-life scenario to show how Python is used to solve the problem at hand. • Python data science—manipulating data and data visualization • Data cleansing • Understanding Machine learning algorithms • Supervised learning algorithms • Unsupervised learning algorithms • Deploying machine learning models Python Machine Learning is essential reading for students, developers, or anyone with a keen interest in taking their coding skills to the next level.