EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fundamentals of Microfabrication and Nanotechnology  Three Volume Set

Download or read book Fundamentals of Microfabrication and Nanotechnology Three Volume Set written by Marc J. Madou and published by CRC Press. This book was released on 2018-12-14 with total page 1983 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, Fundamentals of Microfabrication and Nanotechnology continues to provide the most complete MEMS coverage available. Thoroughly revised and updated the new edition of this perennial bestseller has been expanded to three volumes, reflecting the substantial growth of this field. It includes a wealth of theoretical and practical information on nanotechnology and NEMS and offers background and comprehensive information on materials, processes, and manufacturing options. The first volume offers a rigorous theoretical treatment of micro- and nanosciences, and includes sections on solid-state physics, quantum mechanics, crystallography, and fluidics. The second volume presents a very large set of manufacturing techniques for micro- and nanofabrication and covers different forms of lithography, material removal processes, and additive technologies. The third volume focuses on manufacturing techniques and applications of Bio-MEMS and Bio-NEMS. Illustrated in color throughout, this seminal work is a cogent instructional text, providing classroom and self-learners with worked-out examples and end-of-chapter problems. The author characterizes and defines major research areas and illustrates them with examples pulled from the most recent literature and from his own work.

Book Microfluidics and Lab on a Chip

Download or read book Microfluidics and Lab on a Chip written by Andreas Manz and published by Royal Society of Chemistry. This book was released on 2020-09-24 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Responding to the need for an affordable, easy-to-read textbook that introduces microfluidics to undergraduate and postgraduate students, this concise book will provide a broad overview of the important theoretical and practical aspects of microfluidics and lab-on-a-chip, as well as its applications.

Book Micro Total Analysis Systems

Download or read book Micro Total Analysis Systems written by Albert Berg and published by Springer Science & Business Media. This book was released on 1995 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of silicon-based microsystems for chemical analysis is one of the most promising concepts in the recent developments in micro system technology (MST). It is expected that chemical sensors will be increasingly integrated in so-called miniaturized total analysis systems (muTAS), a concept first presented by Ciba-Geigy. In such systems, all steps in a chemical determination, from sampling to detection and data treatment, are integrated in one miniature instrument. muTAS offer a variety of advantages over conventional analysis systems such as improved analytical performance, reduced reagent and power consumption, small size, possibility of new and more complicated functions, higher reliability and lower fabrication costs. Application of muTAS may be found in fields like process industry, environmental monitoring, medical diagnostics, aeronautics, automotive industry, etc.

Book Intensification of Liquid   Liquid Processes

Download or read book Intensification of Liquid Liquid Processes written by Laurence R. Weatherley and published by Cambridge University Press. This book was released on 2020-04-16 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore and review novel techniques for intensifying transport and reaction in liquid-liquid and related systems with this essential toolkit. Topics include discussion of the principles of process intensification, the nexus between process intensification and sustainable engineering, and the fundamentals of liquid-liquid contacting, from an expert with over forty-five years' experience in the field. Providing promising directions for investment and for new research in process intensification, in addition to a unique review of the fundamentals of the topic, this book is the perfect guide for senior undergraduate students, graduate students, developers, and research staff in chemical engineering and biochemical engineering.

Book Microfluidics

    Book Details:
  • Author : Yu Song
  • Publisher : John Wiley & Sons
  • Release : 2018-05-07
  • ISBN : 3527341064
  • Pages : 576 pages

Download or read book Microfluidics written by Yu Song and published by John Wiley & Sons. This book was released on 2018-05-07 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book offering a global overview of fundamental microfluidics and the wide range of possible applications, for example, in chemistry, biology, and biomedical science. As such, it summarizes recent progress in microfluidics, including its origin and development, the theoretical fundamentals, and fabrication techniques for microfluidic devices. The book also comprehensively covers the fluid mechanics, physics and chemistry as well as applications in such different fields as detection and synthesis of inorganic and organic materials. A useful reference for non-specialists and a basic guideline for research scientists and technicians already active in this field or intending to work in microfluidics.

Book Advances in Microfluidics Technology for Diagnostics and Detection

Download or read book Advances in Microfluidics Technology for Diagnostics and Detection written by David Kinahan and published by MDPI. This book was released on 2021-09-06 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics and lab-on-a-chip have, in recent years, come to the forefront in diagnostics and detection. At point-of-care, in the emergency room, and at the hospital bed or GP clinic, lab-on-a-chip offers the potential to rapidly detect time-critical and life-threatening diseases such as sepsis and bacterial meningitis. Furthermore, portable and user-friendly diagnostic platforms can enable disease diagnostics and detection in resource-poor settings where centralised laboratory facilities may not be available. At point-of-use, microfluidics and lab-on-chip can be applied in the field to rapidly identify plant pathogens, thus reducing the need for damaging broad spectrum pesticides while also reducing food losses. Microfluidics can also be applied to the continuous monitoring of water quality and can support policy-makers and protection agencies in protecting the environment. Perhaps most excitingly, microfluidics also offers the potential to enable entirely new diagnostic tests that cannot be implemented using conventional laboratory tools. Examples of microfluidics at the frontier of new medical diagnostic tests include early detection of cancers through circulating tumour cells (CTCs) and highly sensitive genetic tests using droplet-based digital PCR. This Special Issue on “Advances in Microfluidics Technology for Diagnostics and Detection” aims to gather outstanding research and to carry out comprehensive coverage of all aspects related to microfluidics in diagnostics and detection.

Book Cell Analysis on Microfluidics

Download or read book Cell Analysis on Microfluidics written by Jin-Ming Lin and published by Springer. This book was released on 2017-10-25 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed overview of the design, formatting, application, and development of microfluidic chips in the context of cell biology research, enumerating each element involved in microfluidics-based cell analysis, discussing its history, status quo, and future prospects, It also offers an extensive review of the research completed in the past decade, including numerous color figures. The individual chapters are based on the respective authors' studies and experiences, providing tips from the frontline to help researchers overcome bottlenecks in their own work. It highlights a number of cutting-edge techniques, such as 3D cell culture, microfluidic droplet technique, and microfluidic chip-mass spectrometry interfaces, offering a first-hand impression of the latest trends in the field and suggesting new research directions. Serving as both an elementary introduction and advanced guidebook, the book interests and inspires scholars and students who are currently studying microfluidics-based cell analysis methods as well as those who wish to do so.

Book Microfluidics for Biotechnology

Download or read book Microfluidics for Biotechnology written by Jean Berthier and published by Artech House. This book was released on 2010 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of microfluidics to biotechnology is an exciting new area that has already begun to revolutionize how researchers study and manipulate macromolecules like DNA, proteins and cells in vitro and within living organisms. Now in a newly revised and expanded second edition, the Artech House bestseller, Microfluidics for Biotechnology brings you to the cutting edge of this burgeoning field. Among the numerous updates, the second edition features three entirely new chapters on: non-dimensional numbers in microfluidics; interface, capillarity and microdrops; and digital, two-phase and droplet microfluidics.Presenting an enlightening balance of numerical approaches, theory, and experimental examples, this book provides a detailed look at the mechanical behavior of the different types of micro/nano particles and macromolecules that are used in biotechnology. You gain a solid understanding of microfluidics theory and the mechanics of microflows and microdrops. The book examines the diffusion of species and nanoparticles, including continuous flow and discrete Monte-Carlo methods.This unique volume describes the transport and dispersion of biochemical species and particles. You learn how to model biochemical reactions, including DNA hybridization and enzymatic reactions. Moreover, the book helps you master the theory, applications, and modeling of magnetic beads behavior and provides an overview of self-assembly and magnetic composite. Other key topics include the electric manipulation of micro/nanoparticles and macromolecules and the experimental aspects of biological macromolecule manipulation.

Book Lab on a Chip Devices and Micro Total Analysis Systems

Download or read book Lab on a Chip Devices and Micro Total Analysis Systems written by Jaime Castillo-León and published by Springer. This book was released on 2014-11-05 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers all the steps in order to fabricate a lab-on-a-chip device starting from the idea, the design, simulation, fabrication and final evaluation. Additionally, it includes basic theory on microfluidics essential to understand how fluids behave at such reduced scale. Examples of successful histories of lab-on-a-chip systems that made an impact in fields like biomedicine and life sciences are also provided. This book also: · Provides readers with a unique approach and toolset for lab-on-a-chip development in terms of materials, fabrication techniques, and components · Discusses novel materials and techniques, such as paper-based devices and synthesis of chemical compounds on-chip · Covers the four key aspects of development: basic theory, design, fabrication, and testing · Provides readers with a comprehensive list of the most important journals, blogs, forums, and conferences where microfluidics and lab-on-a-chip news, methods, techniques and challenges are presented and discussed, as well as a list of companies providing design and simulation support, components, and/or developing lab-on-a-chip and microfluidic devices.

Book Micro Nano Devices for Blood Analysis

Download or read book Micro Nano Devices for Blood Analysis written by Rui A. Lima and published by MDPI. This book was released on 2019-12-03 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of micro- and nanodevices for blood analysis is an interdisciplinary subject that demands the integration of several research fields, such as biotechnology, medicine, chemistry, informatics, optics, electronics, mechanics, and micro/nanotechnologies. Over the last few decades, there has been a notably fast development in the miniaturization of mechanical microdevices, later known as microelectromechanical systems (MEMS), which combine electrical and mechanical components at a microscale level. The integration of microflow and optical components in MEMS microdevices, as well as the development of micropumps and microvalves, have promoted the interest of several research fields dealing with fluid flow and transport phenomena happening in microscale devices. Microfluidic systems have many advantages over their macroscale counterparts, offering the ability to work with small sample volumes, providing good manipulation and control of samples, decreasing reaction times, and allowing parallel operations in one single step. As a consequence, microdevices offer great potential for the development of portable and point-of-care diagnostic devices, particularly for blood analysis. Moreover, the recent progress in nanotechnology has contributed to its increasing popularity, and has expanded the areas of application of microfluidic devices, including in the manipulation and analysis of flows on the scale of DNA, proteins, and nanoparticles (nanoflows). In this Special Issue, we invited contributions (original research papers, review articles, and brief communications) that focus on the latest advances and challenges in micro- and nanodevices for diagnostics and blood analysis, micro- and nanofluidics, technologies for flow visualization, MEMS, biochips, and lab-on-a-chip devices and their application to research and industry. We hope to provide an opportunity to the engineering and biomedical community to exchange knowledge and information and to bring together researchers who are interested in the general field of MEMS and micro/nanofluidics and, especially, in its applications to biomedical areas.

Book Microfluidics and Nanofluidics

    Book Details:
  • Author : Mohsen Sheikholeslami Kandelousi
  • Publisher : BoD – Books on Demand
  • Release : 2018-08-22
  • ISBN : 1789235405
  • Pages : 320 pages

Download or read book Microfluidics and Nanofluidics written by Mohsen Sheikholeslami Kandelousi and published by BoD – Books on Demand. This book was released on 2018-08-22 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present book, various applications of microfluidics and nanofluidics are introduced. Microfluidics and nanofluidics span a broad array of disciplines including mechanical, materials, and electrical engineering, surface science, chemistry, physics and biology. Also, this book deals with transport and interactions of colloidal particles and biomolecules in microchannels, which have great importance to many microfluidic applications, such as drug delivery in life science, microchannel heat exchangers in electronic cooling, and food processing industry. Furthermore, this book focuses on a detailed description of the thermal transport behavior, challenges and implications that involve the development and use of HTFs under the influence of atomistic-scale structures and industrial applications.

Book Microfluidic Devices for Biomedical Applications

Download or read book Microfluidic Devices for Biomedical Applications written by Xiujun (James) Li and published by Woodhead Publishing. This book was released on 2021-08-05 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidic Devices for Biomedical Applications, Second Edition provides updated coverage on the fundamentals of microfluidics, while also exploring a wide range of medical applications. Chapters review materials and methods, microfluidic actuation mechanisms, recent research on droplet microfluidics, applications in drug discovery and controlled-delivery, including micro needles, consider applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and their role in developing tissue scaffolds, and cover the applications of microfluidic devices in diagnostic sensing, including genetic analysis, low-cost bioassays, viral detection, and radio chemical synthesis. This book is an essential reference for medical device manufacturers, scientists and researchers concerned with microfluidics in the field of biomedical applications and life-science industries. - Discusses the fundamentals of microfluidics or lab-on-a-chip (LOC) and explores a wide range of medical applications - Considers materials and methods for microfabrication, microfluidic actuation mechanisms and digital microfluidic technologies - Details applications of microfluidic devices in cellular analysis and manipulation, tissue engineering and its role in developing tissue scaffolds, and stem cell engineering

Book Polymer Particles

Download or read book Polymer Particles written by Masayoshi Okubo and published by Springer Science & Business Media. This book was released on 2005-02-10 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this special volume on polymer particles, recent trends and developments in the synthesis of nano- to micron-sized polymer particles by radical polymerization (Emulsion, Miniemulsion, Microemulsion, and Dispersion Polymerizations) of vinyl monomers in environmentally friendly heterogeneous aqueous and supercritical carbon dioxide fluid media are reviewed by prominent worldwide researchers. In addition to the important challenges and possibilities with regards to design and preparation of functionalized polymer particles of controlled size, the topics described are of great current interest due to the increased awareness of environmental issues.

Book Microscale Surface Tension and Its Applications

Download or read book Microscale Surface Tension and Its Applications written by Pierre Lambert and published by MDPI. This book was released on 2019-10-21 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on advances in miniaturization and soft matter, surface tension effects are a major key to the development of soft/fluidic microrobotics. Benefiting from scaling laws, surface tension and capillary effects can enable sensing, actuation, adhesion, confinement, compliance, and other structural and functional properties necessary in micro- and nanosystems. Various applications are under development: microfluidic and lab-on-chip devices, soft gripping and manipulation of particles, colloidal and interfacial assemblies, fluidic/droplet mechatronics. The capillary action is ubiquitous in drops, bubbles and menisci, opening a broad spectrum of technological solutions and scientific investigations. Identified grand challenges to the establishment of fluidic microrobotics include mastering the dynamics of capillary effects, controlling the hysteresis arising from wetting and evaporation, improving the dispensing and handling of tiny droplets, and developing a mechatronic approach for the control and programming of surface tension effects. In this Special Issue of Micromachines, we invite contributions covering all aspects of microscale engineering relying on surface tension. Particularly, we welcome contributions on fundamentals or applications related to: Drop-botics: fluidic or surface tension-based micro/nanorobotics: capillary manipulation, gripping, and actuation, sensing, folding, propulsion and bio-inspired solutions; Control of surface tension effects: surface tension gradients, active surfactants, thermocapillarity, electrowetting, elastocapillarity; Handling of droplets, bubbles and liquid bridges: dispensing, confinement, displacement, stretching, rupture, evaporation; Capillary forces: modelling, measurement, simulation; Interfacial engineering: smart liquids, surface treatments; Interfacial fluidic and capillary assembly of colloids and devices; Biological applications of surface tension, including lab-on-chip and organ-on-chip systems.

Book Particles  Bubbles   Drops

    Book Details:
  • Author : Efstathios Michaelides
  • Publisher : World Scientific
  • Release : 2006
  • ISBN : 9812566473
  • Pages : 425 pages

Download or read book Particles Bubbles Drops written by Efstathios Michaelides and published by World Scientific. This book was released on 2006 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of multiphase flows has grown by leaps and bounds in the last thirty years and is now regarded as a major discipline. Engineering applications, products and processes with particles, bubbles and drops have consistently grown in number and importance. An increasing number of conferences, scientific fora and archived journals are dedicated to the dissemination of information on flow, heat and mass transfer of fluids with particles, bubbles and drops. Numerical computations and "thought experiments" have supplemented most physical experiments and a great deal of the product design and testing processes. The literature on computational fluid dynamics with particles, bubbles and drops has grown at an exponential rate, giving rise to new results, theories and better understanding of the transport processes with particles, bubbles and drops. This book captures and summarizes all these advances in a unified, succinct and pedagogical way. Contents: Fundamental Equations and Characteristics of Particles, Bubbles and Drops; Low Reynolds Number Flows; High Reynolds Number Flows; Non-Spherical Particles, Bubbles and Drops; Effects of Rotation, Shear and Boundaries; Effects of Turbulence; Electro-Kinetic, Thermo-Kinetic and Porosity Effects; Effects of Higher Concentration and Collisions; Molecular and Statistical Modeling; Numerical Methods-CFD. Key Features Summarizes the recent important results in the theory of transport processes of fluids with particles, bubbles and drops Presents the results in a unified and succinct way Contains more than 600 references where an interested reader may find details of the results Makes connections from all theories and results to physical and engineering applications Readership: Researchers, practicing engineers and physicists that deal with any aspects of Multiphase Flows. It will also be of interest to academics and researchers in the general fields of mechanical and chemical engineering.

Book Chemical Engineering Fluid Mechanics

Download or read book Chemical Engineering Fluid Mechanics written by Ron Darby and published by CRC Press. This book was released on 2016-11-30 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides readers with the most current, accurate, and practical fluid mechanics related applications that the practicing BS level engineer needs today in the chemical and related industries, in addition to a fundamental understanding of these applications based upon sound fundamental basic scientific principles. The emphasis remains on problem solving, and the new edition includes many more examples.

Book Microfluidics and BioMEMS Applications

Download or read book Microfluidics and BioMEMS Applications written by Francis E. H. Tay and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidics and BioMEMS Applications central idea is on microfluidics, a relatively new research field which finds its niche in biomedical devices, especially on lab-on-a-chip and related products. Being the essential component in providing driving fluidic flows, an example of micropump is chosen to illustrate a complete cycle in development of microfluidic devices which include literature review, designing and modelling, fabrication and testing. A few articles are included to demonstrate the idea of tackling this research problem, and they cover the main development scope discussed earlier as well as other advanced modelling schemes for microfluidics and beyond. Scientists and students working in the areas of MEMS and microfluidics will benefit from this book, which may serve both communities as both a reference monograph and a textbook for courses in numerical simulation, and design and development of microfluidic devices.