Download or read book Data Driven Prediction for Industrial Processes and Their Applications written by Jun Zhao and published by Springer. This book was released on 2018-08-20 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents modeling methods and algorithms for data-driven prediction and forecasting of practical industrial process by employing machine learning and statistics methodologies. Related case studies, especially on energy systems in the steel industry are also addressed and analyzed. The case studies in this volume are entirely rooted in both classical data-driven prediction problems and industrial practice requirements. Detailed figures and tables demonstrate the effectiveness and generalization of the methods addressed, and the classifications of the addressed prediction problems come from practical industrial demands, rather than from academic categories. As such, readers will learn the corresponding approaches for resolving their industrial technical problems. Although the contents of this book and its case studies come from the steel industry, these techniques can be also used for other process industries. This book appeals to students, researchers, and professionals within the machine learning and data analysis and mining communities.
Download or read book Pragmatic Idealism and Scientific Prediction written by Amanda Guillán and published by Springer. This book was released on 2017-08-30 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph analyzes Nicholas Rescher’s system of pragmatic idealism. It also looks at his approach to prediction in science. Coverage highlights a prominent contribution to a central topic in the philosophy and methodology of science. The author offers a full characterization of Rescher’s system of philosophy. She presents readers with a comprehensive philosophico-methodological analysis of this important work. Her research takes into account different thematic realms: semantic, logical, epistemological, methodological, ontological, axiological, and ethical. The book features three, thematic-parts: I) General Coordinates, Semantic Features and Logical Components of Scientific Prediction; II) Predictive Knowledge and Predictive Processes in Rescher’s Methodological Pragmatism; and III) From Reality to Values: Ontological Features, Axiological Elements, and Ethical Aspects of Scientific Prediction. This insightful analysis offers a critical reconstruction of Rescher’s philosophy. The system he created is often characterized as pragmatic idealism that is open to some realist elements. He is a prominent representative of contemporary pragmatism who has made a great deal of contributions to the study of this topic. This area is crucial for science and it has been little considered in the philosophy of science.
Download or read book GOOGLE STOCK PRICE TIME SERIES ANALYSIS VISUALIZATION FORECASTING AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-06-11 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Google, officially known as Alphabet Inc., is an American multinational technology company. It was founded in September 1998 by Larry Page and Sergey Brin while they were Ph.D. students at Stanford University. Initially, it started as a research project to develop a search engine, but it rapidly grew into one of the largest and most influential technology companies in the world. Google is primarily known for its internet-related services and products, with its search engine being its most well-known offering. It revolutionized the way people access information by providing a fast and efficient search engine that delivers highly relevant results. Over the years, Google expanded its portfolio to include a wide range of products and services, including Google Maps, Google Drive, Gmail, Google Docs, Google Photos, Google Chrome, YouTube, and many more. In addition to its internet services, Google ventured into hardware with products like the Google Pixel smartphones, Google Home smart speakers, and Google Nest smart home devices. It also developed its own operating system called Android, which has become the most widely used mobile operating system globally. Google's success can be attributed to its ability to monetize its services through online advertising. The company introduced Google AdWords, a highly successful online advertising program that enables businesses to display ads on Google's search engine and other websites through its AdSense program. Advertising contributes significantly to Google's revenue, along with other sources such as cloud services, app sales, and licensing fees. The dataset used in this project starts from 19-Aug-2004 and is updated till 11-Oct-2021. It contains 4317 rows and 7 columns. The columns in the dataset are Date, Open, High, Low, Close, Adj Close, and Volume. You can download the dataset from https://viviansiahaan.blogspot.com/2023/06/google-stock-price-time-series-analysis.html. In this project, you will involve technical indicators such as daily returns, Moving Average Convergence-Divergence (MACD), Relative Strength Index (RSI), Simple Moving Average (SMA), lower and upper bands, and standard deviation. In this book, you will learn how to perform forecasting based on regression on Adj Close price of Google stock price, you will use: Linear Regression, Random Forest regression, Decision Tree regression, Support Vector Machine regression, Naïve Bayes regression, K-Nearest Neighbor regression, Adaboost regression, Gradient Boosting regression, Extreme Gradient Boosting regression, Light Gradient Boosting regression, Catboost regression, MLP regression, Lasso regression, and Ridge regression. The machine learning models used to predict Google daily returns as target variable are K-Nearest Neighbor classifier, Random Forest classifier, Naive Bayes classifier, Logistic Regression classifier, Decision Tree classifier, Support Vector Machine classifier, LGBM classifier, Gradient Boosting classifier, XGB classifier, MLP classifier, and Extra Trees classifier. Finally, you will develop GUI to plot boundary decision, distribution of features, feature importance, predicted values versus true values, confusion matrix, learning curve, performance of the model, and scalability of the model.
Download or read book Predicted San Fernando Earthquake Spectra written by J. R. Murphy and published by . This book was released on 1971 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Air Insulation Prediction Theory and Applications written by Zhibin Qiu and published by Springer. This book was released on 2019-05-18 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book proposes the air insulation prediction theory and method in the subject of electrical engineering. Prediction of discharge voltage in different cases are discussed and worked out by simulation. After decades, now bottlenecks of traditional air discharge theories can be solved with this book. Engineering applications of the theory in air gap discharge voltage prediction are introduced. This book serves as reference for graduate students, scientific research personnel and engineering staff in the related fields.
Download or read book Basic Prediction Techniques in Modern Video Coding Standards written by Byung-Gyu Kim and published by Springer. This book was released on 2016-06-21 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses in detail the basic algorithms of video compression that are widely used in modern video codec. The authors dissect complicated specifications and present material in a way that gets readers quickly up to speed by describing video compression algorithms succinctly, without going to the mathematical details and technical specifications. For accelerated learning, hybrid codec structure, inter- and intra- prediction techniques in MPEG-4, H.264/AVC, and HEVC are discussed together. In addition, the latest research in the fast encoder design for the HEVC and H.264/AVC is also included.
Download or read book Earthquake Prediction Opportunity to Avert Disaster written by Edgar A. Imhoff and published by . This book was released on 1949 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contributions from city of San Francisco, Director of Emergency Services; National Science Foundation, Research Applications, Directorate; State of California, Office of Emergency Services, Seismic Safety Commission; U.S. Department of the Interior, Assistant Secretary for Energy and Minerals, Geological Survey; University of California at Los Angeles, Department of Sociology.
Download or read book Philosophico Methodological Analysis of Prediction and its Role in Economics written by Wenceslao J. Gonzalez and published by Springer. This book was released on 2015-02-19 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops a philosophico-methodological analysis of prediction and its role in economics. Prediction plays a key role in economics in various ways. It can be seen as a basic science, as an applied science and in the application of this science. First, it is used by economic theory in order to test the available knowledge. In this regard, prediction has been presented as the scientific test for economics as a science. Second, prediction provides a content regarding the possible future that can be used for prescription in applied economics. Thus, it can be used as a guide for economic policy, i.e., as knowledge concerning the future to be employed for the resolution of specific problems. Third, prediction also has a role in the application of this science in the public arena. This is through the decision-making of the agents — individuals or organizations — in quite different settings, both in the realm of microeconomics and macroeconomics. Within this context, the research is organized in five parts, which discuss relevant aspects of the role of prediction in economics: I) The problem of prediction as a test for a science; II) The general orientation in methodology of science and the problem of prediction as a scientific test; III) The methodological framework of social sciences and economics: Incidence for prediction as a test; IV) Epistemology and methodology of economic prediction: Rationality and empirical approaches and V) Methodological aspects of economic prediction: From description to prescription. Thus, the book is of interest for philosophers and economists as well as policy-makers seeking to ascertain the roots of their performance. The style used lends itself to a wide audience.
Download or read book Evaluation of mathematical models for temperature prediction in deep reservoirs written by F.L. Parker and published by Рипол Классик. This book was released on 1975 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Software Fault Prediction written by Sandeep Kumar and published by Springer. This book was released on 2018-06-06 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on exploring the use of software fault prediction in building reliable and robust software systems. It is divided into the following chapters: Chapter 1 presents an introduction to the study and also introduces basic concepts of software fault prediction. Chapter 2 explains the generalized architecture of the software fault prediction process and discusses its various components. In turn, Chapter 3 provides detailed information on types of fault prediction models and discusses the latest literature on each model. Chapter 4 describes the software fault datasets and diverse issues concerning fault datasets when building fault prediction models. Chapter 5 presents a study evaluating different techniques on the basis of their performance for software fault prediction. Chapter 6 presents another study evaluating techniques for predicting the number of faults in the software modules. In closing, Chapter 7 provides a summary of the topics discussed. The book will be of immense benefit to all readers who are interested in starting research in this area. In addition, it offers experienced researchers a valuable overview of the latest work in this area.
Download or read book Genomic Sequence Analysis for Exon Prediction Using Adaptive Signal Processing Algorithms written by Md. Zia Ur Rahman and published by CRC Press. This book was released on 2021-06-30 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the issue of improving the accuracy in exon prediction in DNA sequences using various adaptive techniques based on different performance measures that are crucial in disease diagnosis and therapy. First, the authors present an overview of genomics engineering, structure of DNA sequence and its building blocks, genetic information flow in a cell, gene prediction along with its significance, and various types of gene prediction methods, followed by a review of literature starting with the biological background of genomic sequence analysis. Next, they cover various theoretical considerations of adaptive filtering techniques used for DNA analysis, with an introduction to adaptive filtering, properties of adaptive algorithms, and the need for development of adaptive exon predictors (AEPs) and structure of AEP used for DNA analysis. Then, they extend the approach of least mean squares (LMS) algorithm and its sign-based realizations with normalization factor for DNA analysis. They also present the normalized logarithmic-based realizations of least mean logarithmic squares (LMLS) and least logarithmic absolute difference (LLAD) adaptive algorithms that include normalized LMLS (NLMLS) algorithm, normalized LLAD (NLLAD) algorithm, and their signed variants. This book ends with an overview of the goals achieved and highlights the primary achievements using all proposed techniques. This book is intended to provide rigorous use of adaptive signal processing algorithms for genetic engineering, biomedical engineering, and bioinformatics and is useful for undergraduate and postgraduate students. This will also serve as a practical guide for Ph.D. students and researchers and will provide a number of research directions for further work. Features Presents an overview of genomics engineering, structure of DNA sequence and its building blocks, genetic information flow in a cell, gene prediction along with its significance, and various types of gene prediction methods Covers various theoretical considerations of adaptive filtering techniques used for DNA analysis, introduction to adaptive filtering, properties of adaptive algorithms, need for development of adaptive exon predictors (AEPs), and structure of AEP used for DNA analysis Extends the approach of LMS algorithm and its sign-based realizations with normalization factor for DNA analysis Presents the normalized logarithmic-based realizations of LMLS and LLAD adaptive algorithms that include normalized LMLS (NLMLS) algorithm, normalized LLAD (NLLAD) algorithm, and their signed variants Provides an overview of the goals achieved and highlights the primary achievements using all proposed techniques Dr. Md. Zia Ur Rahman is a professor in the Department of Electronics and Communication Engineering at Koneru Lakshmaiah Educational Foundation (K. L. University), Guntur, India. His current research interests include adaptive signal processing, biomedical signal processing, genetic engineering, medical imaging, array signal processing, medical telemetry, and nanophotonics. Dr. Srinivasareddy Putluri is currently a Software Engineer at Tata Consultancy Services Ltd., Hyderabad. He received his Ph.D. degree (Genomic Signal Processing using Adaptive Signal Processing algorithms) from the Department of Electronics and Communication Engineering at Koneru Lakshmaiah Educational Foundation (K. L. University), Guntur, India. His research interests include genomic signal processing and adaptive signal processing. He has published 15 research papers in various journals and proceedings. He is currently a reviewer of publishers like the IEEE Access and IGI.
Download or read book CRYPTOCURRENCY PRICE ANALYSIS PREDICTION AND FORECASTING USING MACHINE LEARNING WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-07-21 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this project, we will be conducting a comprehensive analysis, prediction, and forecasting of cryptocurrency prices using machine learning with Python. The dataset we will be working with contains historical cryptocurrency price data, and our main objective is to build models that can accurately predict future price movements and daily returns. The first step of the project involves exploring the dataset to gain insights into the structure and contents of the data. We will examine the columns, data types, and any missing values present. After that, we will preprocess the data, handling any missing values and converting data types as needed. This will ensure that our data is clean and ready for analysis. Next, we will proceed with visualizing the dataset to understand the trends and patterns in cryptocurrency prices over time. We will create line plots, box plot, violin plot, and other visualizations to study price movements, trading volumes, and volatility across different cryptocurrencies. These visualizations will help us identify any apparent trends or seasonality in the data. To gain a deeper understanding of the time-series nature of the data, we will conduct time-series analysis year-wise and month-wise. This analysis will involve decomposing the time-series into its individual components like trend, seasonality, and noise. Additionally, we will look for patterns in price movements during specific months to identify any recurring seasonal effects. To enhance our predictions, we will also incorporate technical indicators into our analysis. Technical indicators, such as moving averages, Relative Strength Index (RSI), and Moving Average Convergence Divergence (MACD), provide valuable information about price momentum and market trends. These indicators can be used as additional features in our machine learning models. With a strong foundation of data exploration, visualization, and time-series analysis, we will now move on to building machine learning models for forecasting the closing price of cryptocurrencies. We will utilize algorithms like Linear Regression, Support Vector Regression, Random Forest Regression, Decision Tree Regression, K-Nearest Neighbors Regression, Adaboost Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, Catboost Regression, Multi-Layer Perceptron Regression, Lasso Regression, and Ridge Regression to make forecasting. By training our models on historical data, they will learn to recognize patterns and make predictions for future price movements. As part of our machine learning efforts, we will also develop models for predicting daily returns of cryptocurrencies. Daily returns are essential indicators for investors and traders, as they reflect the percentage change in price from one day to the next. By using historical price data and technical indicators as input features, we can build models that forecast daily returns accurately. Throughout the project, we will perform extensive hyperparameter tuning using techniques like Grid Search and Random Search. This will help us identify the best combinations of hyperparameters for each model, optimizing their performance. To validate the accuracy and robustness of our models, we will use various evaluation metrics such as Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared. These metrics will provide insights into the model's ability to predict cryptocurrency prices accurately. In conclusion, this project on cryptocurrency price analysis, prediction, and forecasting is a comprehensive exploration of using machine learning with Python to analyze and predict cryptocurrency price movements. By leveraging data visualization, time-series analysis, technical indicators, and machine learning algorithms, we aim to build accurate and reliable models for predicting future price movements and daily returns. The project's outcomes will be valuable for investors, traders, and analysts looking to make informed decisions in the highly volatile and dynamic world of cryptocurrencies. Through rigorous evaluation and validation, we strive to create robust models that can contribute to a better understanding of cryptocurrency market dynamics and support data-driven decision-making.
Download or read book U S Predicted Cancer Incidence 1999 written by Linda Williams Pickle and published by . This book was released on 2003 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Seizure Prediction in Epilepsy written by Björn Schelter and published by John Wiley & Sons. This book was released on 2008-11-21 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprising some 30 contributions, experts from around the world present and discuss recent advances related to seizure prediction in epilepsy. The book covers an extraordinarily broad spectrum, starting from modeling epilepsy in single cells or networks of a few cells to precisely-tailored seizure prediction techniques as applied to human data. This unique overview of our current level of knowledge and future perspectives provides theoreticians as well as practitioners, newcomers and experts with an up-to-date survey of developments in this important field of research.
Download or read book Assessment of Intraseasonal to Interannual Climate Prediction and Predictability written by National Research Council and published by National Academies Press. This book was released on 2010-10-08 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: More accurate forecasts of climate conditions over time periods of weeks to a few years could help people plan agricultural activities, mitigate drought, and manage energy resources, amongst other activities; however, current forecast systems have limited ability on these time- scales. Models for such climate forecasts must take into account complex interactions among the ocean, atmosphere, and land surface. Such processes can be difficult to represent realistically. To improve the quality of forecasts, this book makes recommendations about the development of the tools used in forecasting and about specific research goals for improving understanding of sources of predictability. To improve the accessibility of these forecasts to decision-makers and researchers, this book also suggests best practices to improve how forecasts are made and disseminated.
Download or read book Reliability Prediction and Testing Textbook written by Lev M. Klyatis and published by John Wiley & Sons. This book was released on 2018-07-12 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook reviews the methodologies of reliability prediction as currently used in industries such as electronics, automotive, aircraft, aerospace, off-highway, farm machinery, and others. It then discusses why these are not successful; and, presents methods developed by the authors for obtaining accurate information for successful prediction. The approach is founded on approaches that accurately duplicate the real world use of the product. Their approach is based on two fundamental components needed for successful reliability prediction; first, the methodology necessary; and, second, use of accelerated reliability and durability testing as a source of the necessary data. Applicable to all areas of engineering, this textbook details the newest techniques and tools to achieve successful reliabilityprediction and testing. It demonstrates practical examples of the implementation of the approaches described. This book is a tool for engineers, managers, researchers, in industry, teachers, and students. The reader will learn the importance of the interactions of the influencing factors and the interconnections of safety and human factors in product prediction and testing.
Download or read book Predicted and Measured Strain Responses of Isotropic Panels to Base Excitation written by Karen H. Lyle and published by . This book was released on 1988 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: