Download or read book Practical Applications of LLMs in Business written by StoryBuddiesPlay and published by StoryBuddiesPlay. This book was released on 2024-09-10 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Practical Applications of LLMs in Business" is an essential guide for forward-thinking leaders and innovators seeking to harness the power of Artificial Intelligence. This comprehensive book explores how Large Language Models are transforming various aspects of business operations, from customer service and marketing to financial analysis and product development. Packed with real-world examples, practical insights, and expert guidance, this volume provides a roadmap for implementing AI technologies to enhance productivity, drive innovation, and gain a competitive edge in today's rapidly evolving business landscape. Whether you're a seasoned executive or an aspiring entrepreneur, this book will equip you with the knowledge and strategies needed to successfully navigate the AI revolution and shape the future of your organization. Large Language Models, AI in Business, Natural Language Processing, Machine Learning, Business Innovation, Digital Transformation, Artificial Intelligence Applications, Data-Driven Decision Making, AI Implementation Strategies, Future of Business Technology
Download or read book ITNG 2024 21st International Conference on Information Technology New Generations written by Shahram Latifi and published by Springer Nature. This book was released on with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Generative AI Business Applications written by David E. Sweenor and published by TinyTechMedia LLC. This book was released on 2024-01-31 with total page 60 pages. Available in PDF, EPUB and Kindle. Book excerpt: Within the past year, generative AI has broken barriers and transformed how we think about what computers are truly capable of. But, with the marketing hype and generative AI washing of content, it’s increasingly difficult for business leaders and practitioners to go beyond the art of the possible and answer that critical question–how is generative AI actually being used in organizations? With over 70 real-world case studies and applications across 12 different industries and 11 departments, Generative AI Business Applications: An Executive Guide with Real-Life Examples and Case Studies fills a critical knowledge gap for business leaders and practitioners by providing examples of generative AI in action. Diving into the case studies, this TinyTechGuide discusses AI risks, implementation considerations, generative AI operations, AI ethics, and trustworthy AI. The world is transforming before our very eyes. Don’t get left behind—while understanding the powers and perils of generative AI. Full of use cases and real-world applications, this book is designed for business leaders, tech professionals, and IT teams. We provide practical, jargon-free explanations of generative AI's transformative power. Gain a competitive edge in today's marketplace with Generative AI Business Applications: An Executive Guide with Real-Life Examples and Case Studies. Remember, it's not the tech that's tiny, just the book!™
Download or read book Practical Data Quality written by Robert Hawker and published by Packt Publishing Ltd. This book was released on 2023-09-29 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Identify data quality issues, leverage real-world examples and templates to drive change, and unlock the benefits of improved data in processes and decision-making Key Features Get a practical explanation of data quality concepts and the imperative for change when data is poor Gain insights into linking business objectives and data to drive the right data quality priorities Explore the data quality lifecycle and accelerate improvement with the help of real-world examples Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionPoor data quality can lead to increased costs, hinder revenue growth, compromise decision-making, and introduce risk into organizations. This leads to employees, customers, and suppliers finding every interaction with the organization frustrating. Practical Data Quality provides a comprehensive view of managing data quality within your organization, covering everything from business cases through to embedding improvements that you make to the organization permanently. Each chapter explains a key element of data quality management, from linking strategy and data together to profiling and designing business rules which reveal bad data. The book outlines a suite of tried-and-tested reports that highlight bad data and allow you to develop a plan to make corrections. Throughout the book, you’ll work with real-world examples and utilize re-usable templates to accelerate your initiatives. By the end of this book, you’ll have gained a clear understanding of every stage of a data quality initiative and be able to drive tangible results for your organization at pace.What you will learn Explore data quality and see how it fits within a data management programme Differentiate your organization from its peers through data quality improvement Create a business case and get support for your data quality initiative Find out how business strategy can be linked to processes, analytics, and data to derive only the most important data quality rules Monitor data through engaging, business-friendly data quality dashboards Integrate data quality into everyday business activities to help achieve goals Avoid common mistakes when implementing data quality practices Who this book is for This book is for data analysts, data engineers, and chief data officers looking to understand data quality practices and their implementation in their organization. This book will also be helpful for business leaders who see data adversely affecting their success and data teams that want to optimize their data quality approach. No prior knowledge of data quality basics is required.
Download or read book Enterprise Business Process and Information Systems Modeling written by Han van der Aa and published by Springer Nature. This book was released on with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Developer s Playbook for Large Language Model Security written by Steve Wilson and published by "O'Reilly Media, Inc.". This book was released on 2024-09-03 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large language models (LLMs) are not just shaping the trajectory of AI, they're also unveiling a new era of security challenges. This practical book takes you straight to the heart of these threats. Author Steve Wilson, chief product officer at Exabeam, focuses exclusively on LLMs, eschewing generalized AI security to delve into the unique characteristics and vulnerabilities inherent in these models. Complete with collective wisdom gained from the creation of the OWASP Top 10 for LLMs list—a feat accomplished by more than 400 industry experts—this guide delivers real-world guidance and practical strategies to help developers and security teams grapple with the realities of LLM applications. Whether you're architecting a new application or adding AI features to an existing one, this book is your go-to resource for mastering the security landscape of the next frontier in AI. You'll learn: Why LLMs present unique security challenges How to navigate the many risk conditions associated with using LLM technology The threat landscape pertaining to LLMs and the critical trust boundaries that must be maintained How to identify the top risks and vulnerabilities associated with LLMs Methods for deploying defenses to protect against attacks on top vulnerabilities Ways to actively manage critical trust boundaries on your systems to ensure secure execution and risk minimization
Download or read book Mastering NLP from Foundations to LLMs written by Lior Gazit and published by Packt Publishing Ltd. This book was released on 2024-04-26 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Enhance your NLP proficiency with modern frameworks like LangChain, explore mathematical foundations and code samples, and gain expert insights into current and future trends Key Features Learn how to build Python-driven solutions with a focus on NLP, LLMs, RAGs, and GPT Master embedding techniques and machine learning principles for real-world applications Understand the mathematical foundations of NLP and deep learning designs Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionDo you want to master Natural Language Processing (NLP) but don’t know where to begin? This book will give you the right head start. Written by leaders in machine learning and NLP, Mastering NLP from Foundations to LLMs provides an in-depth introduction to techniques. Starting with the mathematical foundations of machine learning (ML), you’ll gradually progress to advanced NLP applications such as large language models (LLMs) and AI applications. You’ll get to grips with linear algebra, optimization, probability, and statistics, which are essential for understanding and implementing machine learning and NLP algorithms. You’ll also explore general machine learning techniques and find out how they relate to NLP. Next, you’ll learn how to preprocess text data, explore methods for cleaning and preparing text for analysis, and understand how to do text classification. You’ll get all of this and more along with complete Python code samples. By the end of the book, the advanced topics of LLMs’ theory, design, and applications will be discussed along with the future trends in NLP, which will feature expert opinions. You’ll also get to strengthen your practical skills by working on sample real-world NLP business problems and solutions.What you will learn Master the mathematical foundations of machine learning and NLP Implement advanced techniques for preprocessing text data and analysis Design ML-NLP systems in Python Model and classify text using traditional machine learning and deep learning methods Understand the theory and design of LLMs and their implementation for various applications in AI Explore NLP insights, trends, and expert opinions on its future direction and potential Who this book is for This book is for deep learning and machine learning researchers, NLP practitioners, ML/NLP educators, and STEM students. Professionals working with text data as part of their projects will also find plenty of useful information in this book. Beginner-level familiarity with machine learning and a basic working knowledge of Python will help you get the best out of this book.
Download or read book Natural Language Processing and Information Systems written by Amon Rapp and published by Springer Nature. This book was released on with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Generative Intelligence and Intelligent Tutoring Systems written by Angelo Sifaleras and published by Springer Nature. This book was released on with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Business Analytics and Decision Making in Practice written by Ali Emrouznejad and published by Springer Nature. This book was released on with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The Practice of Enterprise Modeling written by João Paulo A. Almeida and published by Springer Nature. This book was released on with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book A Beginner s Guide to Large Language Models written by Enamul Haque and published by Enamul Haque. This book was released on 2024-07-25 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Beginner's Guide to Large Language Models: Conversational AI for Non-Technical Enthusiasts Step into the revolutionary world of artificial intelligence with "A Beginner's Guide to Large Language Models: Conversational AI for Non-Technical Enthusiasts." Whether you're a curious individual or a professional seeking to leverage AI in your field, this book demystifies the complexities of large language models (LLMs) with engaging, easy-to-understand explanations and practical insights. Explore the fascinating journey of AI from its early roots to the cutting-edge advancements that power today's conversational AI systems. Discover how LLMs, like ChatGPT and Google's Gemini, are transforming industries, enhancing productivity, and sparking creativity across the globe. With the guidance of this comprehensive and accessible guide, you'll gain a solid understanding of how LLMs work, their real-world applications, and the ethical considerations they entail. Packed with vivid examples, hands-on exercises, and real-life scenarios, this book will empower you to harness the full potential of LLMs. Learn to generate creative content, translate languages in real-time, summarise complex information, and even develop AI-powered applications—all without needing a technical background. You'll also find valuable insights into the evolving job landscape, equipping you with the knowledge to pursue a successful career in this dynamic field. This guide ensures that AI is not just an abstract concept but a tangible tool you can use to transform your everyday life and work. Dive into the future with confidence and curiosity, and discover the incredible possibilities that large language models offer. Join the AI revolution and unlock the secrets of the technology that's reshaping our world. "A Beginner's Guide to Large Language Models" is your key to understanding and mastering the power of conversational AI. Introduction This introduction sets the stage for understanding the evolution of artificial intelligence (AI) and large language models (LLMs). It highlights the promise of making complex AI concepts accessible to non-technical readers and outlines the unique approach of this book. Chapter 1: Demystifying AI and LLMs: A Journey Through Time This chapter introduces the basics of AI, using simple analogies and real-world examples. It traces the evolution of AI, from rule-based systems to machine learning and deep learning, leading to the emergence of LLMs. Key concepts such as tokens, vocabulary, and embeddings are explained to build a solid foundation for understanding how LLMs process and generate language. Chapter 2: Mastering Large Language Models Delving deeper into the mechanics of LLMs, this chapter covers the transformer architecture, attention mechanisms, and the processes involved in training and fine-tuning LLMs. It includes hands-on exercises with prompts and discusses advanced techniques like chain-of-thought prompting and prompt chaining to optimise LLM performance. Chapter 3: The LLM Toolbox: Unleashing the Power of Language AI This chapter explores the diverse applications of LLMs in text generation, language translation, summarisation, question answering, and code generation. It also introduces multimodal LLMs that handle both text and images, showcasing their impact on various creative and professional fields. Practical examples and real-life scenarios illustrate how these tools can enhance productivity and creativity. Chapter 4: LLMs in the Real World: Transforming Industries Highlighting the transformative impact of LLMs across different industries, this chapter covers their role in healthcare, finance, education, creative industries, and business. It discusses how LLMs are revolutionising tasks such as medical diagnosis, fraud detection, personalised tutoring, and content creation, and explores the future of work in an AI-powered world. Chapter 5: The Dark Side of LLMs: Ethical Concerns and Challenges Addressing the ethical challenges of LLMs, this chapter covers bias and fairness, privacy concerns, misuse of LLMs, security threats, and the transparency of AI decision-making. It also discusses ethical frameworks for responsible AI development and presents diverse perspectives on the risks and benefits of LLMs. Chapter 6: Mastering LLMs: Advanced Techniques and Strategies This chapter focuses on advanced techniques for leveraging LLMs, such as combining transformers with other AI models, fine-tuning open-source LLMs for specific tasks, and building LLM-powered applications. It provides detailed guidance on prompt engineering for various applications and includes a step-by-step guide to creating an AI-powered chatbot. Chapter 7: LLMs and the Future: A Glimpse into Tomorrow Looking ahead, this chapter explores emerging trends and potential breakthroughs in AI and LLM research. It discusses ethical AI development, insights from leading AI experts, and visions of a future where LLMs are integrated into everyday life. The chapter highlights the importance of building responsible AI systems that address societal concerns. Chapter 8: Your LLM Career Roadmap: Navigating the AI Job Landscape Focusing on the growing demand for LLM expertise, this chapter outlines various career paths in the AI field, such as LLM scientists, engineers, and prompt engineers. It provides resources for building the necessary skillsets and discusses the evolving job market, emphasising the importance of continuous learning and adaptability in a rapidly changing industry. Thought-Provoking Questions, Simple Exercises, and Real-Life Scenarios The book concludes with practical exercises and real-life scenarios to help readers apply their knowledge of LLMs. It includes thought-provoking questions to deepen understanding and provides resources and tools for further exploration of LLM applications. Tools to Help with Your Exercises This section lists tools and platforms for engaging with LLM exercises, such as OpenAI's Playground, Google Translate, and various IDEs for coding. Links to these tools are provided to facilitate hands-on learning and experimentation.
Download or read book Smart Services Summit written by Shaun West and published by Springer Nature. This book was released on with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book The LLM Advantage How to Unlock the Power of Language Models for Business Success written by Asish Dash and published by Grazing Minds Publishing. This book was released on 2023-11-10 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The LLM Advantage: How to Harness the Power of Language, Logic, and Math Models for Your Business Success" is a comprehensive guide for individuals navigating the dynamic landscape of 21st-century business. Authored by Asish Dash, an experienced investor and entrepreneur with over a decade in technology startups, this book delves into the transformative realm of artificial intelligence, natural language processing, and data science. From ideation to execution to optimization, readers will explore the crucial role of Language, Logic, and Math Models (LLMs) in generating ideas, validating assumptions, building products, attracting customers, and improving overall business performance. Through real-world examples featuring prominent LLMs like GPT-3, BERT, and OpenAI Codex, the book illustrates how these models can interact with and understand natural language. It also examines the profound impact of LLMs on diverse business aspects, including product development, marketing, customer service, operations, strategy, and management. With insights from both successful and unsuccessful entrepreneurs, readers will gain valuable perspectives on navigating the opportunities and challenges posed by LLMs. The book provides a roadmap for developing the mindset, skills, and attributes of an LLM entrepreneur, offering practical tips, tools, and case studies for leveraging LLMs in business projects. Additionally, it addresses the ethical, legal, and technical considerations inherent in LLM entrepreneurship, guiding readers on best practices and risk mitigation. Closing with a forward-looking exploration of untapped potentials and emerging trends in LLM entrepreneurship, the book equips readers to discover new markets, industries, and innovations. The concluding chapter summarizes key takeaways, providing encouragement, inspiration, and resources for further exploration.
Download or read book The Generative AI Practitioner s Guide written by Arup Das and published by TinyTechMedia LLC. This book was released on 2024-07-20 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: Generative AI is revolutionizing the way organizations leverage technology to gain a competitive edge. However, as more companies experiment with and adopt AI systems, it becomes challenging for data and analytics professionals, AI practitioners, executives, technologists, and business leaders to look beyond the buzz and focus on the essential questions: Where should we begin? How do we initiate the process? What potential pitfalls should we be aware of? This TinyTechGuide offers valuable insights and practical recommendations on constructing a business case, calculating ROI, exploring real-life applications, and considering ethical implications. Crucially, it introduces five LLM patterns—author, retriever, extractor, agent, and experimental—to effectively implement GenAI systems within an organization. The Generative AI Practitioner’s Guide: How to Apply LLM Patterns for Enterprise Applications bridges critical knowledge gaps for business leaders and practitioners, equipping them with a comprehensive toolkit to define a business case and successfully deploy GenAI. In today’s rapidly evolving world, staying ahead of the competition requires a deep understanding of these five implementation patterns and the potential benefits and risks associated with GenAI. Designed for business leaders, tech experts, and IT teams, this book provides real-life examples and actionable insights into GenAI’s transformative impact on various industries. Empower your organization with a competitive edge in today’s marketplace using The Generative AI Practitioner’s Guide: How to Apply LLM Patterns for Enterprise Applications. Remember, it’s not the tech that’s tiny, just the book!™
Download or read book Generative AI Foundations in Python written by Carlos Rodriguez and published by Packt Publishing Ltd. This book was released on 2024-07-26 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Begin your generative AI journey with Python as you explore large language models, understand responsible generative AI practices, and apply your knowledge to real-world applications through guided tutorials Key Features Gain expertise in prompt engineering, LLM fine-tuning, and domain adaptation Use transformers-based LLMs and diffusion models to implement AI applications Discover strategies to optimize model performance, address ethical considerations, and build trust in AI systems Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe intricacies and breadth of generative AI (GenAI) and large language models can sometimes eclipse their practical application. It is pivotal to understand the foundational concepts needed to implement generative AI. This guide explains the core concepts behind -of-the-art generative models by combining theory and hands-on application. Generative AI Foundations in Python begins by laying a foundational understanding, presenting the fundamentals of generative LLMs and their historical evolution, while also setting the stage for deeper exploration. You’ll also understand how to apply generative LLMs in real-world applications. The book cuts through the complexity and offers actionable guidance on deploying and fine-tuning pre-trained language models with Python. Later, you’ll delve into topics such as task-specific fine-tuning, domain adaptation, prompt engineering, quantitative evaluation, and responsible AI, focusing on how to effectively and responsibly use generative LLMs. By the end of this book, you’ll be well-versed in applying generative AI capabilities to real-world problems, confidently navigating its enormous potential ethically and responsibly.What you will learn Discover the fundamentals of GenAI and its foundations in NLP Dissect foundational generative architectures including GANs, transformers, and diffusion models Find out how to fine-tune LLMs for specific NLP tasks Understand transfer learning and fine-tuning to facilitate domain adaptation, including fields such as finance Explore prompt engineering, including in-context learning, templatization, and rationalization through chain-of-thought and RAG Implement responsible practices with generative LLMs to minimize bias, toxicity, and other harmful outputs Who this book is for This book is for developers, data scientists, and machine learning engineers embarking on projects driven by generative AI. A general understanding of machine learning and deep learning, as well as some proficiency with Python, is expected.
Download or read book Generative AI Application Integration Patterns written by Juan Pablo Bustos and published by Packt Publishing Ltd. This book was released on 2024-09-05 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unleash the transformative potential of GenAI with this comprehensive guide that serves as an indispensable roadmap for integrating large language models into real-world applications. Gain invaluable insights into identifying compelling use cases, leveraging state-of-the-art models effectively, deploying these models into your applications at scale, and navigating ethical considerations. Key Features Get familiar with the most important tools and concepts used in real scenarios to design GenAI apps Interact with GenAI models to tailor model behavior to minimize hallucinations Get acquainted with a variety of strategies and an easy to follow 4 step frameworks for integrating GenAI into applications Book Description Explore the transformative potential of GenAI in the application development lifecycle. Through concrete examples, you will go through the process of ideation and integration, understanding the tradeoffs and the decision points when integrating GenAI. With recent advances in models like Google Gemini, Anthropic Claude, DALL-E and GPT-4o, this timely resource will help you harness these technologies through proven design patterns. We then delve into the practical applications of GenAI, identifying common use cases and applying design patterns to address real-world challenges. From summarization and metadata extraction to intent classification and question answering, each chapter offers practical examples and blueprints for leveraging GenAI across diverse domains and tasks. You will learn how to fine-tune models for specific applications, progressing from basic prompting to sophisticated strategies such as retrieval augmented generation (RAG) and chain of thought. Additionally, we provide end-to-end guidance on operationalizing models, including data prep, training, deployment, and monitoring. We also focus on responsible and ethical development techniques for transparency, auditing, and governance as crucial design patterns. What you will learn Concepts of GenAI: pre-training, fine-tuning, prompt engineering, and RAG Framework for integrating AI: entry points, prompt pre-processing, inference, post-processing, and presentation Patterns for batch and real-time integration Code samples for metadata extraction, summarization, intent classification, question-answering with RAG, and more Ethical use: bias mitigation, data privacy, and monitoring Deployment and hosting options for GenAI models Who this book is for This book is not an introduction to AI/ML or Python. It offers practical guides for designing, building, and deploying GenAI applications in production. While all readers are welcome, those who benefit most include: Developer engineers with foundational tech knowledge Software architects seeking best practices and design patterns Professionals using ML for data science, research, etc., who want a deeper understanding of Generative AI Technical product managers with a software development background This concise focus ensures practical, actionable insights for experienced professionals