EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Power Electronic Converters for Microgrids

Download or read book Power Electronic Converters for Microgrids written by Suleiman M. Sharkh and published by John Wiley & Sons. This book was released on 2014-04-14 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: As concerns about climate change, energy prices, and energy security loom, regulatory and research communities have shown growing interest in alternative energy sources and their integration into distributed energy systems. However, many of the candidate microgeneration and associated storage systems cannot be readily interfaced to the 50/60 Hz grid. In Power Electronic Converters for Microgrids, Sharkh and Abu-Sara introduce the basics and practical concerns of analyzing and designing such micro-generation grid interface systems. Readers will become familiar with methods for stably feeding the larger grid, importing from the grid to charge on-site storage, disconnecting from the grid in case of grid failure, as well as connect multiple microgrids while sharing their loads appropriately. Sharkh and Abu-Sara introduce not only the larger context of the technology, but also present potential future applications, along with detailed case studies and tutorials to help the reader effectively engineer microgrid systems.

Book Power Electronic Converters for Microgrids

Download or read book Power Electronic Converters for Microgrids written by Suleiman M. Sharkh and published by John Wiley & Sons. This book was released on 2014-06-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: As concerns about climate change, energy prices, and energy security loom, regulatory and research communities have shown growing interest in alternative energy sources and their integration into distributed energy systems. However, many of the candidate microgeneration and associated storage systems cannot be readily interfaced to the 50/60 Hz grid. In Power Electronic Converters for Microgrids, Sharkh and Abu-Sara introduce the basics and practical concerns of analyzing and designing such micro-generation grid interface systems. Readers will become familiar with methods for stably feeding the larger grid, importing from the grid to charge on-site storage, disconnecting from the grid in case of grid failure, as well as connect multiple microgrids while sharing their loads appropriately. Sharkh and Abu-Sara introduce not only the larger context of the technology, but also present potential future applications, along with detailed case studies and tutorials to help the reader effectively engineer microgrid systems.

Book Modeling and Control of Power Electronic Converters for Microgrid Applications

Download or read book Modeling and Control of Power Electronic Converters for Microgrid Applications written by Yang Han and published by Springer Nature. This book was released on 2021-08-27 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the fundamentals of power electronic converter modeling and control, digital simulation, and experimental studies in the area of renewable energy systems and AC/DC microgrid. Recent advanced control methods for voltage source inverters (VSIs) and the hierarchical controlled islanded microgrid are discussed, including the mathematical modeling, controller synthesis, parameter selection and multi-scale stability analysis, and consensus-based control strategies for the microgrid and microgrid clusters. The book will be an invaluable technical reference for practicing engineers and researchers working in the areas of renewable energy, power electronics, energy internet, and smart grid. It can also be utilized as reference book for undergraduate and postgraduate students in electrical engineering.

Book Control of Power Electronic Converters with Microgrid Applications

Download or read book Control of Power Electronic Converters with Microgrid Applications written by Arindam Ghosh and published by John Wiley & Sons. This book was released on 2022-10-04 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control of Power Electronic Converters with Microgrid Applications Discover a systematic approach to design controllers for power electronic converters and circuits In Control of Power Electronic Converters with Microgrid Applications, distinguished academics and authors Drs. Arindam Ghosh and Firuz Zare deliver a systematic exploration of design controllers for power electronic converters and circuits. The book offers readers the knowledge necessary to effectively design intelligent control mechanisms. It covers the theoretical requirements, like advanced control theories and the analysis and conditioning of AC signals as well as controller development and control. The authors provide readers with discussions of custom power devices, as well as both DC and AC microgrids. They also discuss the harmonic issues that are crucial in this area, as well as harmonic standardization. The book addresses a widespread lack of understanding in the control philosophy that can lead to a stable operation of converters, with a focus on the application of power electronics to power distribution systems. Readers will also benefit from the inclusion of: A thorough introduction to controller design for different power electronic converter configurations in microgrid systems (both AC and DC) A presentation of emerging technology in power distribution systems to integrate different renewable energy sources Chapters on DC-DC converters and DC microgrids, as well as DC-AC converter modulation techniques and custom power devices, predictive control, and AC microgrids Perfect for manufacturers of power converters, microgrid developers and installers, as well as consultants who work in this area, Control of Power Electronic Converters with Microgrid Applications is also an indispensable reference for graduate students, senior undergraduate students, and researchers seeking a one-stop resource for the design of controllers for power electronic converters and circuits.

Book Power Electronic Converter Configuration and Control for DC Microgrid Systems

Download or read book Power Electronic Converter Configuration and Control for DC Microgrid Systems written by Jens Bo Holm-Nielsen and published by MDPI. This book was released on 2020-11-13 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: The DC/AC microgrid system is a crucial empowering technology for the integration of various types of renewable energy sources (RES) accompanied by a smart control approach to enhance the system reliability and efficiency. This book presents cutting-edge technology developments and recent investigations performed with the help of power electronics. Large-scale renewable energy integration presents challenges and issues for power grids. In particular, these issues include microgrid adaption to RES, AC machines, the new configuration of AC/DC converters, and electrification of domestic needs with optimal cost expenses from domestic standalone microgrids. Furthermore, this book elaborates cutting-edge developments in electric vehicle fast charging configuration, battery management, and control schemes with renewable energies through hardware-in-loop testing and validation for performance durability in real-time application. Overall, the book covers the diverse field of microgrids, allowing readers to adopt new technologies and prepare for future power demands with sustainable green engineering.

Book Model Predictive Control for Microgrids

Download or read book Model Predictive Control for Microgrids written by Jiefeng Hu and published by Energy Engineering. This book was released on 2021-09 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model predictive control (MPC) is a method for controlling a process while satisfying a set of constraints. The use of MPC for controlling power systems has been gaining traction in recent years. This work presents the use of MPC for distributed renewable power generation in microgrids.

Book Microgrid Architectures  Control and Protection Methods

Download or read book Microgrid Architectures Control and Protection Methods written by Naser Mahdavi Tabatabaei and published by Springer. This book was released on 2019-08-01 with total page 781 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents intuitive explanations of the principles of microgrids, including their structure and operation and their applications. It also discusses the latest research on microgrid control and protection technologies and the essentials of microgrids as well as enhanced communication systems. The book provides solutions to microgrid operation and planning issues using various methodologies including planning and modelling; AC and DC hybrid microgrids; energy storage systems in microgrids; and optimal microgrid operational planning. Written by specialists, it is filled in innovative solutions and research related to microgrid operation, making it a valuable resource for those interested in developing updated approaches in electric power analysis, design and operational strategies. Thanks to its in-depth explanations and clear, three-part structure, it is useful for electrical engineering students, researchers and technicians.

Book Modelling and Simulation of Power Electronic Converter Dominated Power Systems in PowerFactory

Download or read book Modelling and Simulation of Power Electronic Converter Dominated Power Systems in PowerFactory written by Francisco M. Gonzalez-Longatt and published by Springer Nature. This book was released on 2021 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of power electronic converters for numerical simulations based on DIgSILENT PowerFactory. It covers the working principles, key assumptions and implementation of models of different types of these power systems. The book is divided into three main parts: the first discusses high-voltage direct currents, while the second part examines distribution systems and micro-grids. Lastly, the third addresses the equipment and technologies used in modelling and simulation. Each chapter includes practical examples and exercises, and the accompanying software illustrates essential models, principles and performance using DIgSILENT PowerFactory. Exploring various current topics in the field of modelling power systems, this book will appeal to a variety of readers, ranging from students to practitioners.

Book Power Electronic Converters and Systems

Download or read book Power Electronic Converters and Systems written by Andrzej M. Trzynadlowski and published by IET. This book was released on 2015-12-11 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: Power electronic systems are indispensable in adjustable speed drives, national smart power grid, electric and hybrid cars, electric locomotives and subway trains, renewable energy sources and distributed generation. As a result, the interest in power electronics is expanding along with the need for a source of state-of-the-art knowledge. With chapters written by specialists in their field, this important book is a comprehensive compendium of topics related to recent advances in power electronic devices, converters and systems. It will be essential reading for practicing engineers specializing in the development and application of power electronic converters and systems. It will also be of value to graduate students specializing in power electronics, renewable energy and power systems, and for postdocs involved in related research projects.

Book Emerging Power Converters for Renewable Energy and Electric Vehicles

Download or read book Emerging Power Converters for Renewable Energy and Electric Vehicles written by Md. Rabiul Islam and published by CRC Press. This book was released on 2021-05-30 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers advancements of power electronic converters and their control techniques for grid integration of large-scale renewable energy sources and electrical vehicles. Major emphasis is on transformer-less direct grid integration, bidirectional power transfer, compensation of grid power quality issues, DC system protection and grounding, interaction in mixed AC/DC systems, AC and DC system stability, design of high-frequency high power density systems with advanced soft magnetic materials, modeling and simulation of mixed AC/DC systems, switching strategies for enhanced efficiency, and protection and reliability for sustainable grid integration. This book is an invaluable resource for professionals active in the field of renewable energy and power conversion. Md. Rabiul Islam received his PhD from the University of Technology Sydney (UTS), Australia. He was appointed as a Lecturer at Rajshahi University of Engineering & Technology (RUET) in 2005 and promoted to full-term Professor in 2017. In early 2018, he joined the School of Electrical, Computer, and Telecommunications Engineering, University of Wollongong, Australia. He is a Senior Member of IEEE. His research interests include the fields of power electronic converters, renewable energy technologies, power quality, electrical machines, electric vehicles, and smart grids. He has authored or coauthored more than 200 publications including 50 IEEE Transactions/IEEE Journal papers. He has been serving as an editor for IEEE Transactions on Energy Conversion and IEEE Power Engineering Letters, and associate editor for IEEE Access. Md. Rakibuzzaman Shah is a Senior Lecturer with the School of Engineering, Information Technology and Physical Science at Federation University Australia. He has worked and consulted with distribution network operators and transmission system operators on individual projects and has done collaborative work on a large number of projects (EPSRC project on multi-terminal HVDC, Scottish and Southern Energy multi-infeed HVDC) - primarily on the dynamic impact of integrating new technologies and power electronics into large systems. He is an active member of the IEEE and CIGRE. He has more than 70 international publications and has spoken at the leading power system conferences around the world. His research interests include future power grids (i.e., renewable energy integration, wide-area control), asynchronous grid connection through VSC-HVDC, application of data mining in power system, distribution system energy management, and low carbon energy systems. Mohd. Hasan Ali is currently an Associate Professor with the Electrical and Computer Engineering Department at the University of Memphis, USA, where he leads the Electric Power and Energy Systems (EPES) Laboratory. His research interests include advanced power systems, smart-grid and microgrid systems, renewable energy systems, and cybersecurity issues in modern power grids. Dr. Ali has more than 190 publications, including 2 books, 4 book chapters, 2 patents, 60 top ranked journal papers, 96 peer-reviewed international conference papers, and 20 national conference papers. He serves as the editor of the IEEE Transactions on Sustainable Energy and IET-Generation, Transmission and Distribution (GTD) journal. Dr. Ali is a Senior Member of the IEEE Power and Energy Society (PES). He is also the Chair of the PES of the IEEE Memphis Section.

Book Smart Hybrid AC DC Microgrids

Download or read book Smart Hybrid AC DC Microgrids written by Yunwei Ryan Li and published by John Wiley & Sons. This book was released on 2022-09-06 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: SMART HYBRID AC/DC MICROGRIDS Addresses the technical aspects and implementation challenges of smart hybrid AC/DC microgrids Hybrid AC/DC Microgrids: Power Management, Energy Management, and Power Quality Control provides comprehensive coverage of interconnected smart hybrid microgrids, their different structures, and the technical issues associated with their control and implementation in the next generation of smart grids. This authoritative single-volume resource addresses smart hybrid microgrids power management, energy management, communications, power converter control, power quality, renewable generation integration, energy storage, and more. The book contains both basic and advanced technical information about smart hybrid AC/DC microgrids, featuring a detailed discussion of microgrid structures, communication technologies, and various configurations of interfacing power converters and control strategies. Numerous case studies highlight effective solutions for critical issues in hybrid microgrid operation, control and power quality compensation throughout the text. Topics include control strategies of renewable energy and energy storage interfacing converters in hybrid microgrids, supervisory control strategies of interfacing power converters for microgrid power management and energy microgrid, and smart interfacing power converters for power quality control. This volume: Includes a thorough overview of hybrid AC/DC microgrid concepts, structures, and applications Discusses communication and security enhancement techniques for guarding against cyberattacks Provides detailed controls of smart interfacing power electronics converters from distributed generations and energy storage systems in hybrid AC/DC microgrids Provides details on transient and steady-state power management systems in microgrids Discusses energy management systems, hierarchical control, multi-agent control, and advanced distribution management control of smart microgrids Identifies opportunities to control power quality with smart interfacing power electronic converters Addresses power quality issues in the context of real-world applications in data centers, electric railway systems, and electric vehicle charging stations Smart Hybrid AC/DC Microgrids: Power Management, Energy Management, and Power Quality Control is a valuable source of up-to-date information for senior undergraduate and graduate students as well as academic researchers and industry engineers in the areas of renewable energy, smart grids, microgrids, and power electronics.

Book Microgrid Technologies

    Book Details:
  • Author : C. Sharmeela
  • Publisher : John Wiley & Sons
  • Release : 2021-04-13
  • ISBN : 1119710790
  • Pages : 562 pages

Download or read book Microgrid Technologies written by C. Sharmeela and published by John Wiley & Sons. This book was released on 2021-04-13 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microgrid technology is an emerging area, and it has numerous advantages over the conventional power grid. A microgrid is defined as Distributed Energy Resources (DER) and interconnected loads with clearly defined electrical boundaries that act as a single controllable entity concerning the grid. Microgrid technology enables the connection and disconnection of the system from the grid. That is, the microgrid can operate both in grid-connected and islanded modes of operation. Microgrid technologies are an important part of the evolving landscape of energy and power systems. Many aspects of microgrids are discussed in this volume, including, in the early chapters of the book, the various types of energy storage systems, power and energy management for microgrids, power electronics interface for AC & DC microgrids, battery management systems for microgrid applications, power system analysis for microgrids, and many others. The middle section of the book presents the power quality problems in microgrid systems and its mitigations, gives an overview of various power quality problems and its solutions, describes the PSO algorithm based UPQC controller for power quality enhancement, describes the power quality enhancement and grid support through a solar energy conversion system, presents the fuzzy logic-based power quality assessments, and covers various power quality indices. The final chapters in the book present the recent advancements in the microgrids, applications of Internet of Things (IoT) for microgrids, the application of artificial intelligent techniques, modeling of green energy smart meter for microgrids, communication networks for microgrids, and other aspects of microgrid technologies. Valuable as a learning tool for beginners in this area as well as a daily reference for engineers and scientists working in the area of microgrids, this is a must-have for any library.

Book Power Electronics for Renewable and Distributed Energy Systems

Download or read book Power Electronics for Renewable and Distributed Energy Systems written by Sudipta Chakraborty and published by Springer Science & Business Media. This book was released on 2013-06-12 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: While most books approach power electronics and renewable energy as two separate subjects, Power Electronics for Renewable and Distributed Energy Systems takes an integrative approach; discussing power electronic converters topologies, controls and integration that are specific to the renewable and distributed energy system applications. An overview of power electronic technologies is followed by the introduction of various renewable and distributed energy resources that includes photovoltaics, wind, small hydroelectric, fuel cells, microturbines and variable speed generation. Energy storage systems such as battery and fast response storage systems are discussed along with application-specific examples. After setting forth the fundamentals, the chapters focus on more complex topics such as modular power electronics, microgrids and smart grids for integrating renewable and distributed energy. Emerging topics such as advanced electric vehicles and distributed control paradigm for power system control are discussed in the last two chapters. With contributions from subject matter experts, the diagrams and detailed examples provided in each chapter make Power Electronics for Renewable and Distributed Energy Systems a sourcebook for electrical engineers and consultants working to deploy various renewable and distributed energy systems and can serve as a comprehensive guide for the upper-level undergraduates and graduate students across the globe.

Book Power Electronic Converter Configuration and Control for DC Microgrid Systems

Download or read book Power Electronic Converter Configuration and Control for DC Microgrid Systems written by Jens Bo Holm-Nielsen and published by . This book was released on 2020 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: The DC/AC microgrid system is a crucial empowering technology for the integration of various types of renewable energy sources (RES) accompanied by a smart control approach to enhance the system reliability and efficiency. This book presents cutting-edge technology developments and recent investigations performed with the help of power electronics. Large-scale renewable energy integration presents challenges and issues for power grids. In particular, these issues include microgrid adaption to RES, AC machines, the new configuration of AC/DC converters, and electrification of domestic needs with optimal cost expenses from domestic standalone microgrids. Furthermore, this book elaborates cutting-edge developments in electric vehicle fast charging configuration, battery management, and control schemes with renewable energies through hardware-in-loop testing and validation for performance durability in real-time application. Overall, the book covers the diverse field of microgrids, allowing readers to adopt new technologies and prepare for future power demands with sustainable green engineering.

Book Sliding Mode Controllers for Power Electronic Converters

Download or read book Sliding Mode Controllers for Power Electronic Converters written by Axaykumar Mehta and published by Springer. This book was released on 2018-12-13 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book proposes a proportional integral type sliding function, which does not facilitate the finite reaching and hence the responses of the load voltage results in an exponential steady state. To facilitate finite time reaching, it also presents the new Integral Sliding Mode Control with Finite Time Reaching (ISMCFTR). The book also extends the application of the proposed controller to another type of PEC, the DC-DC Boost converter, and also proposes the PI type sliding surface for the Zeta converter, which is non-inverting type Buck Boost converter. An important source of practical implementations, it presents practical implementations as simulation and experimental results to demonstrate the efficacy of the converter.

Book Basic Tutorial on Simulation of Microgrids Control Using MATLAB     Simulink   Software

Download or read book Basic Tutorial on Simulation of Microgrids Control Using MATLAB Simulink Software written by Flávia de Andrade and published by Springer Nature. This book was released on 2020-03-03 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a detailed guide to the design and simulation of basic control methods applied to microgrids in various operating modes, using MATLAB® Simulink® software. It includes discussions on the performance of each configuration, as well as the advantages and limitations of the droop control method. The content is organised didactically, with a level of mathematical and scientific rigour suitable for undergraduate and graduate programmes, as well as for industry professionals. The use of MATLAB® Simulink® software facilitates the learning process with regard to modelling and simulating power electronic converters at the interface of distributed energy resource (DER) systems. The book also features a wealth of illustrations, schematics, and simulation results. Given its scope, it will greatly benefit undergraduate and graduate students in the fields of electrical and electronics engineering, as well as professionals working in microgrid design and implementation.

Book Sustainable Power Systems

Download or read book Sustainable Power Systems written by Nava Raj Karki and published by Springer. This book was released on 2017-01-10 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with quantifying and analyzing the risks associated with sustainable energy technology growth in electric power systems, and developing appropriate models and methodologies to mitigate the risks and improve the overall system performance. The rapid increase in the installation of renewable energy sources in electric power systems has given rise to a wide range of problems related to planning and operation of power systems to maintain quality, stability, reliability and efficiency. Additionally, there is a growing global environmental concern regarding increasing emissions from the electric power generation required to meet rising energy needs and support sustainable and inclusive development. The phenomenon of low voltage ride through (LVRT), common to wind energy systems, is discussed, and ways to tackle the same are proposed in the first chapter. Subsequent chapters propose methods of optimizing a sustainable and smart microgrid, and supplying electricity to remote areas of a developing country with no immediate possibility of national grid extension. The economic benefit and technical challenges of forming localized minigrid are also discussed. The book proposes a method for reliability assessment of a power grid with sustainable power transportation system. The issue of weak link in power system is very important as it will provide the system operators and planners to take necessary measures to strengthen the system. An approach to determine the weak parts of the system and its unreliability is proposed. With increasing installation of HVDC power transmission and development of efficient and low cost power electronic devices, the DC microgrids are becoming a common phenomenon. Their existence together with AC Grids result in Hybrid AC/DC Microgrids, which are discussed in this book. It further presents a method for reliability evaluation of a distribution system with network reconfiguration in the presence of distributed generation. The important problems in sustainable energy growth, and their potential solutions discussed and presented in the book should be of great interest to engineers, policy makers, researchers and academics in the area of electric power engineering.