Download or read book Potential Functions of Random Walks in Z with Infinite Variance written by Kôhei Uchiyama and published by Springer Nature. This book was released on 2023 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the potential functions of one-dimensional recurrent random walks on the lattice of integers with step distribution of infinite variance. The central focus is on obtaining reasonably nice estimates of the potential function. These estimates are then applied to various situations, yielding precise asymptotic results on, among other things, hitting probabilities of finite sets, overshoot distributions, Green functions on long finite intervals and the half-line, and absorption probabilities of two-sided exit problems. The potential function of a random walk is a central object in fluctuation theory. If the variance of the step distribution is finite, the potential function has a simple asymptotic form, which enables the theory of recurrent random walks to be described in a unified way with rather explicit formulae. On the other hand, if the variance is infinite, the potential function behaves in a wide range of ways depending on the step distribution, which the asymptotic behaviour of many functionals of the random walk closely reflects. In the case when the step distribution is attracted to a strictly stable law, aspects of the random walk have been intensively studied and remarkable results have been established by many authors. However, these results generally do not involve the potential function, and important questions still need to be answered. In the case where the random walk is relatively stable, or if one tail of the step distribution is negligible in comparison to the other on average, there has been much less work. Some of these unsettled problems have scarcely been addressed in the last half-century. As revealed in this treatise, the potential function often turns out to play a significant role in their resolution. Aimed at advanced graduate students specialising in probability theory, this book will also be of interest to researchers and engineers working with random walks and stochastic systems.
Download or read book Random Walks on Infinite Graphs and Groups written by Wolfgang Woess and published by Cambridge University Press. This book was released on 2000-02-13 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.
Download or read book Random Walk and the Heat Equation written by Gregory F. Lawler and published by American Mathematical Soc.. This book was released on 2010-11-22 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation and considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equations and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. This first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For example, solving the heat equation in the discrete setting becomes a problem of diagonalization of symmetric matrices, which becomes a problem in Fourier series in the continuous case. Random walk and Brownian motion are introduced and developed from first principles. The latter two chapters discuss different topics: martingales and fractal dimension, with the chapters tied together by one example, a random Cantor set. The idea of this book is to merge probabilistic and deterministic approaches to heat flow. It is also intended as a bridge from undergraduate analysis to graduate and research perspectives. The book is suitable for advanced undergraduates, particularly those considering graduate work in mathematics or related areas.
Download or read book Random Walk A Modern Introduction written by Gregory F. Lawler and published by Cambridge University Press. This book was released on 2010-06-24 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: Random walks are stochastic processes formed by successive summation of independent, identically distributed random variables and are one of the most studied topics in probability theory. This contemporary introduction evolved from courses taught at Cornell University and the University of Chicago by the first author, who is one of the most highly regarded researchers in the field of stochastic processes. This text meets the need for a modern reference to the detailed properties of an important class of random walks on the integer lattice. It is suitable for probabilists, mathematicians working in related fields, and for researchers in other disciplines who use random walks in modeling.
Download or read book Non homogeneous Random Walks written by Mikhail Menshikov and published by Cambridge University Press. This book was released on 2016-12-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic systems provide powerful abstract models for a variety of important real-life applications: for example, power supply, traffic flow, data transmission. They (and the real systems they model) are often subject to phase transitions, behaving in one way when a parameter is below a certain critical value, then switching behaviour as soon as that critical value is reached. In a real system, we do not necessarily have control over all the parameter values, so it is important to know how to find critical points and to understand system behaviour near these points. This book is a modern presentation of the 'semimartingale' or 'Lyapunov function' method applied to near-critical stochastic systems, exemplified by non-homogeneous random walks. Applications treat near-critical stochastic systems and range across modern probability theory from stochastic billiards models to interacting particle systems. Spatially non-homogeneous random walks are explored in depth, as they provide prototypical near-critical systems.
Download or read book Stochastic Processes Theory and Methods written by D N Shanbhag and published by Gulf Professional Publishing. This book was released on 2001 with total page 990 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume in the series contains chapters on areas such as pareto processes, branching processes, inference in stochastic processes, Poisson approximation, Levy processes, and iterated random maps and some classes of Markov processes. Other chapters cover random walk and fluctuation theory, a semigroup representation and asymptomatic behavior of certain statistics of the Fisher-Wright-Moran coalescent, continuous-time ARMA processes, record sequence and their applications, stochastic networks with product form equilibrium, and stochastic processes in insurance and finance. Other subjects include renewal theory, stochastic processes in reliability, supports of stochastic processes of multiplicity one, Markov chains, diffusion processes, and Ito's stochastic calculus and its applications. c. Book News Inc.
Download or read book Contemporary Problems in Statistical Physics written by George H. Weiss and published by SIAM. This book was released on 1994-01-01 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of independent articles describes some mathematical problems recently developed in statistical physics and theoretical chemistry. The book introduces and reviews current research on such topics as nonlinear systems and colored noise, stochastic resonance, percolation, the trapping problem in the theory of random walks, and diffusive models for chemical kinetics. Some of these topics have never before been presented in expository book form. Applied mathematicians will be introduced to some contemporary problems in statistical physics. In addition, a number of unsolved problems currently attracting intensive research efforts are described.
Download or read book Random Walks on Reductive Groups written by Yves Benoist and published by Springer. This book was released on 2016-10-20 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical theory of random walks describes the asymptotic behavior of sums of independent identically distributed random real variables. This book explains the generalization of this theory to products of independent identically distributed random matrices with real coefficients. Under the assumption that the action of the matrices is semisimple – or, equivalently, that the Zariski closure of the group generated by these matrices is reductive - and under suitable moment assumptions, it is shown that the norm of the products of such random matrices satisfies a number of classical probabilistic laws. This book includes necessary background on the theory of reductive algebraic groups, probability theory and operator theory, thereby providing a modern introduction to the topic.
Download or read book Mathematical Reviews written by and published by . This book was released on 2004 with total page 974 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Inverse Problem Theory written by A. Tarantola and published by Elsevier. This book was released on 2013-10-14 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse Problem Theory is written for physicists, geophysicists and all scientists facing the problem of quantitative interpretation of experimental data. Although it contains a lot of mathematics, it is not intended as a mathematical book, but rather tries to explain how a method of acquisition of information can be applied to the actual world.The book provides a comprehensive, up-to-date description of the methods to be used for fitting experimental data, or to estimate model parameters, and to unify these methods into the Inverse Problem Theory. The first part of the book deals with discrete problems and describes Maximum likelihood, Monte Carlo, Least squares, and Least absolute values methods. The second part deals with inverse problems involving functions.The book is almost completely self-contained, with all important concepts carefully introduced. Although theoretical concepts are strongly emphasized, the author has ensured that all the useful formulas are listed, with many special cases included. The book will thus serve equally well as a reference manual for researchers needing to refresh their memories on a given algorithm, or as a textbook in a course for undergraduate or graduate students.
Download or read book Random Walks Critical Phenomena and Triviality in Quantum Field Theory written by Roberto Fernandez and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simple random walks - or equivalently, sums of independent random vari ables - have long been a standard topic of probability theory and mathemat ical physics. In the 1950s, non-Markovian random-walk models, such as the self-avoiding walk,were introduced into theoretical polymer physics, and gradu ally came to serve as a paradigm for the general theory of critical phenomena. In the past decade, random-walk expansions have evolved into an important tool for the rigorous analysis of critical phenomena in classical spin systems and of the continuum limit in quantum field theory. Among the results obtained by random-walk methods are the proof of triviality of the cp4 quantum field theo ryin space-time dimension d (::::) 4, and the proof of mean-field critical behavior for cp4 and Ising models in space dimension d (::::) 4. The principal goal of the present monograph is to present a detailed review of these developments. It is supplemented by a brief excursion to the theory of random surfaces and various applications thereof. This book has grown out of research carried out by the authors mainly from 1982 until the middle of 1985. Our original intention was to write a research paper. However, the writing of such a paper turned out to be a very slow process, partly because of our geographical separation, partly because each of us was involved in other projects that may have appeared more urgent.
Download or read book Random Walks and Electric Networks written by Peter G. Doyle and published by American Mathematical Soc.. This book was released on 1984-12-31 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability theory, like much of mathematics, is indebted to physics as a source of problems and intuition for solving these problems. Unfortunately, the level of abstraction of current mathematics often makes it difficult for anyone but an expert to appreciate this fact. Random Walks and electric networks looks at the interplay of physics and mathematics in terms of an example—the relation between elementary electric network theory and random walks —where the mathematics involved is at the college level.
Download or read book High Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Download or read book Intersections of Random Walks written by Gregory F. Lawler and published by Springer Science & Business Media. This book was released on 2012-11-06 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: A central study in Probability Theory is the behavior of fluctuation phenomena of partial sums of different types of random variable. One of the most useful concepts for this purpose is that of the random walk which has applications in many areas, particularly in statistical physics and statistical chemistry. Originally published in 1991, Intersections of Random Walks focuses on and explores a number of problems dealing primarily with the nonintersection of random walks and the self-avoiding walk. Many of these problems arise in studying statistical physics and other critical phenomena. Topics include: discrete harmonic measure, including an introduction to diffusion limited aggregation (DLA); the probability that independent random walks do not intersect; and properties of walks without self-intersections. The present softcover reprint includes corrections and addenda from the 1996 printing, and makes this classic monograph available to a wider audience. With a self-contained introduction to the properties of simple random walks, and an emphasis on rigorous results, the book will be useful to researchers in probability and statistical physics and to graduate students interested in basic properties of random walks.
Download or read book Econophysics and Physical Economics written by Peter Richmond and published by Oxford University Press, USA. This book was released on 2013-09-05 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarises progress in the understanding of financial markets and economics based on the established methodology of statistical physics. It offers a new approach to the fundamentals of economics that offers the potential for increased insight and understanding. It should be of interest to all serious students of the subject.
Download or read book Probability written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-08-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Download or read book Galileo Unbound written by David D. Nolte and published by Oxford University Press. This book was released on 2018-07-12 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.