EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Post earthquake Damage Repair and Probabilistic Damage Control Approach for Reinforced Concrete Bridges

Download or read book Post earthquake Damage Repair and Probabilistic Damage Control Approach for Reinforced Concrete Bridges written by Amarjeet Saini and published by . This book was released on 2014 with total page 804 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objectives of the study were to develop post-earthquake repair methods using carbon fiber reinforced polymers (CFRP) and probabilistic damage control approach (PDCA) for reinforced concrete (RC) bridges. To develop repair methods, first repair objectives were defined. To define repair objectives, internal earthquake damage was quantified and correlated to a series of visible damage states (DSs). Bridge columns are designed to be the primary source of energy dissipation through nonlinear action under seismic loading and experience a wide range of apparent damage. Therefore, in the present study, DSs for bridge columns were used as a guide to define damage states for other bridge components. The degree of damage in columns depends on the earthquake level (seismic demand). Due to uncertainties in seismic demand and response, damage to bridge columns is probabilistic in nature. In the present study, in addition to bridge repair, a probabilistic damage control approach PDCA was developed for new and repaired bridge columns by incorporating the extent of lateral displacement nonlinearity defined by "Damage Index" (DI) and reliability analysis. The performance objective was defined based on predefined apparent DSs and the DSs were correlated to damage indices based on a previous study at the University of Nevada, Reno. The correlation between DI and DS was determined from a statistical analysis (resistance model) of over 140 response data measured from testing of 22 bridge column models subjected to seismic loads. To accomplish the objectives of this study, the present study was divided into seven parts. The first part was to conduct a detailed review of damage and repair methods in past earthquakes to identify gaps in repair methods. The second part was to develop practical methods to access the condition of an earthquake damaged bridge structural components in terms of apparent DS's. In the third part, repair design recommendations and design examples were developed to aid bridge engineers in quickly designing the number of CFRP layers based on the apparent DS. The fourth part was to establish a resistance model for the reliability analysis to develop a probabilistic based seismic design of bridge columns. In the fifth part, a load model was developed by conducting a large number of non-linear dynamic analyses on bridge bents. The uncertainties in ground motions, site class, bent configuration, earthquake return period were included in the analyses. In the sixth part of the study, the results of the reliability analyses were investigated, and a direct probabilistic design procedure was developed to calibrate design DI based on target reliability against failure. Finally, the PDCA methodology that was developed for conventional columns was used to extend the PDCA and reliability analysis approach to earthquake-damaged columns that have been repaired. Through this study, a new simple non-iterative method was developed for design of CFRP fabrics used in repair of concrete members. The step-by-step repair methods for bridge components that were developed as part of this study address a gap in rational and systematic repair tools that are needed subsequent to moderate and strong earthquakes. The PDCA that was developed and investigated provides design tools enabling designers and researchers to detail bridge columns for a target expected damage with an associated probability of occurrence and a reliability index.

Book Probabilistic Damage Control Approach for Seismic Design of Bridge Columns

Download or read book Probabilistic Damage Control Approach for Seismic Design of Bridge Columns written by Amarjeet Saini and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Post Earthquake Rehabilitation and Reconstruction

Download or read book Post Earthquake Rehabilitation and Reconstruction written by F.Y. Cheng and published by Elsevier. This book was released on 1996-10-14 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: Damage assessment, rehabilitation, decision-making, social consequences, repair and reconstruction; these are all critical factors for considerations following natural disasters such as earthquakes. In order to address these issues, the United States of America and the Peoples Republic of China regularly organize bilateral symposia/workshops to investigate multiple hazard mitigation, particularly with respect to earthquake engineering. This book contains state-of-the-art reports presented by world-renowned researchers at the US/PRC Sympsosium Workshop on Post-Earthquake Rehabilitation and Reconstruction held in Kunming, Yunnan, China, May 1995. The following key areas are addressed: damage assessment of structures after earthquakes; lessons of post-earthquake recovery, rehabilitation and reconstruction, including public policy, land use options, urban planning, and design; issues in and examples of decision-making, and implementation of rehabilitation and reconstruction plans and policies; repair, strengthening, retrofit and control of structures and lifeline systems, post-earthquake socio-economic problems covering issues of relief and recovery; human and organizational behavior during emergency response, and strategies for improvement; real-time monitoring of earthquake response and damage.

Book Post earthquake Bridge Damage Mitigation

Download or read book Post earthquake Bridge Damage Mitigation written by Amarjeet Saini and published by . This book was released on 2013 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Latest Trends in Engineering and Technology

Download or read book Latest Trends in Engineering and Technology written by Sajjan Singh and published by CRC Press. This book was released on 2024-06-28 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: We are very pleased to introduce the proceedings of the International Conference on Latest Trends in Engineering and Technology [ICLTET 2023]. Papers were well presented in the conference in the fields of Artificial Intelligence, Machine learning, IOT, Communication Networks, Mechanical Engineering, Civil Engineering, Nano Material Research, Business Management and many more to arouse a high level of interest. The presented papers maintained the high promise suggested by the written abstracts and the program was chaired in a professional and efficient way by the session chair who were selected for their expertise in the subject. The number of delegates was also highly gratifying, showing the high level of interest in the subject. This Proceeding provides the permanent record of what was presented. They indicate the state of development at the time of writing of all aspects of this important topic and will be invaluable to all academicians and researchers in the field for that reason. Finally, it is appropriate that we record our thanks to our fellow members of the Technical Organizing Committee for encouraging participation from those areas. We are also indebted to those who served as session chair and reviewers, without their support, the conference could not have been the success that it was. We also acknowledge the authors themselves, without whose expert input there would have been no conference. Their efforts made a great contribution to its success.

Book Seismic Performance Evaluation of Reinforced Concrete Bridge Piers Considering Postearthquake Capacity Degradation

Download or read book Seismic Performance Evaluation of Reinforced Concrete Bridge Piers Considering Postearthquake Capacity Degradation written by Borislav Todorov and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridges play a key role in the transportation sector while serving as lifelines for the economy and safety of communities. The need for resilient bridges is especially important following natural disasters, where they serve as evacuation, aid, and supply routes to an affected area. Much of the earthquake engineering community is interested in improving the resiliency of bridges, and many contributions to the field have been made in the past decades, where a shift towards performancebased design (PBD) practices is underway. While the Canadian Highway Bridge Design Code (CHBDC) has implemented PBD as a requirement for the seismic design of lifeline and major route bridges, the nature of PBD techniques translate to a design process that is not universally compatible for all scenarios and hazards. Therefore, there is great benefit to be realised in the development of PBD guidelines for mainshock-aftershock seismic sequences for scenarios in which the chance to assess and repair a bridge is not possible following a recent mainshock. This research analytically explored a parameterized set of 20 reinforced concrete bridge piers which share several geometrical and material properties with typical bridge bents that support many Canadian bridges. Of those piers, half are designed using current PBD guidelines provided in the 2019 edition of the CHBDC, whereas the remaining half are designed with insufficient transverse reinforcement commonly found in the bridges designed pre-2000. To support this study, a nonlinear fiber-based modelling approach with a proposed material strength degradation scheme is developed using the OpenSEES finite element analysis software. A multiple conditional mean spectra (CMS) approach is used to select a suite of 50 mainshock-aftershock ground motion records for the selected site in Vancouver, British Columbia, which consist of crustal, inslab, and interface earthquakes that commonly occur in areas near the Cascadia Subduction zone. Nonlinear time history analysis is performed for mainshock-only and mainshock-aftershock excitations, and static pushover analysis is also performed in lateral and axial directions for the intact columns, as well as in their respective post-MS and post-AS damaged states. Using the resulting data, a framework for post-earthquake seismic capacity estimation of the bridge piers is developed using machine learning regression methods, where several candidate models are tuned using an exhaustive grid search algorithm approach and k-fold crossvalidation. The tuned models are fitted and evaluated against a test set of data to determine a single best performing model using a multiple scorer performance index as the metric. The resulting performance index suggests that the decision tree model is the most suitable regressor for capacity estimation due to this model exhibiting the highest accuracy as well as lowest residual error. Moreover, this study also assessed the fragility of the bridge piers subjected to mainshock-only and mainshock-aftershock earthquakes. Probabilistic seismic demand models (PSDMs) are derived for the columns designed using current PBD guidelines (PBD-compliant) to evaluate whether the current PBD criteria is sufficient for resisting aftershock effects. Additional PSDMs are generated for the columns with inadequate transverse reinforcement (PBD-deficient) to assess aftershock vulnerability of older bridges. The developed fragility curves indicate an increased fragility of all bridge piers for all damage levels. The findings indicate that adequate aftershock performance is achieved for bridge piers designed to current (2019) CHBDC extensive damage level criteria. Furthermore, it is suggested that minimal damage performance criteria need to be developed for aftershock effects, and the repairable damage level be reintroduced for major route bridges.

Book Next Generation of Bridge Columns for Accelerated Bridge Construction in High Seismic Zones

Download or read book Next Generation of Bridge Columns for Accelerated Bridge Construction in High Seismic Zones written by Mostafa Tazarv and published by . This book was released on 2014 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Longitudinal bar debonding allowed spread of yielding and prevented premature failure of reinforcements in UHPC-filled duct connections and grouted coupler column pedestal. The SMA-reinforced ECC column showed superior seismic performance compared to a conventional column in which the plastic hinge damage was limited to only ECC cover spalling even under 12% drift ratio cycles. The column residual displacements were 79% lower than CIP residual displacements on average due to the superelastic NiTi SMA longitudinal reinforcement, and higher base shear capacity and higher displacement capacity were observed. The analytical modeling methods were simple and sufficiently accurate for general design and analyses of precast components proposed in the present study. The proposed symmetrical material model for reinforcing NiTi superelastic SMA was found to be a viable alternative to the more complex asymmetrical model.

Book Performance based Decision making in Post earthquake Highway Bridge Repair

Download or read book Performance based Decision making in Post earthquake Highway Bridge Repair written by Eugene Gordin and published by . This book was released on 2010 with total page 77 pages. Available in PDF, EPUB and Kindle. Book excerpt: Post-earthquake highway bridge repair is an ever-present part of the lifecycle of transportation systems in seismic regions. These repairs require multi-level decisions involving various stakeholders with differing values. The improvement of the repair decision process, repair decision itself, and repair decision outcomes, requires an evaluation of current practices in post-earthquake repair decision-making. This dissertation assesses these current practices within the California Department of Transportation (Caltrans), outlines areas where the current process is ineffective, and highlights areas for improvement. Current repair decision-making practice is focused on the repair of individual bridges given a limited set of established repair methods. To improve upon these practices, this dissertation presents the Bridge Repair Decision Framework (BRDF), a new and unique methodology that allows for simultaneous consideration of all earthquake-damaged bridges as individual elements of a larger regional transportation system. This systematic approach enables the achievement of short- and long-term transportation system performance objectives while accounting for engineering, construction, financing, and public policy constraints. Furthermore, the BRDF allows for continuous refinement of the decision-making process to incorporate engineering and construction innovations, changes in the financial and public policy environment and, most importantly, changes in transportation system performance goals. While existing methodologies allow the incorporation of some of these changes, the BRDF provides a flexible structure that can account for all of these changes simultaneously. This is accomplished through a rigorous, performance-based, and risk-informed decision-making approach that presents repair decisions using a traditional engineering demand-capacity inequality. As a result, the BRDF empowers decision-makers with a holistic understanding of the transportation network condition on a microscopic (bridge) as well as macroscopic (overall system) level. The BRDF also accounts for the probabilistic nature of the earthquake hazard, bridge seismic capacity, and subsequent repair decisions, providing decision-makers with transparency regarding the uncertainties of system condition, repair method reliability, construction workforce availability, and public and business risks. BRDF decision-outcomes are technology-neutral as a result, greatly expanding the range of repair method alternatives that a decision-maker may consider while allowing for tradeoffs to be made between performance, cost, and time in light of transportation system condition and constraints. The BRDF is validated using a simulated bridge system case study that requires post-earthquake repair. This study was designed to demonstrate the functionality of the framework and to examine two alternate decision-making strategies: one with complete and the other with incomplete post-earthquake bridge damage state information. This case study led to refinements in the framework and insights about the benefits of additional information on the damage state of bridges in terms of overall repair time and cost of the regional transportation system. Additionally, the validation revealed areas where the current BRDF can be improved in future studies. The BRDF was created for large public transportation organizations such as the California Department of Transportation (Caltrans), where implementation of the BRDF requires several important prerequisites, including new database creation and additional training for engineers. Once implemented however, the BRDF allows decision-makers to potentially reduce repair costs and times, minimize system downtime, make better investments, and account for transportation system performance goals given current financial and public policy constraints.

Book Post earthquake Evaluation and Emergency Repair of Damaged RC Bridge Columns Using CFRP Materials

Download or read book Post earthquake Evaluation and Emergency Repair of Damaged RC Bridge Columns Using CFRP Materials written by Ashkan Vosooghi and published by . This book was released on 2010 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of the study was to develop a rapid and effective repair method using carbon fiber reinforced polymer (CFRP) materials for earthquake-damaged reinforced concrete bridge columns. This study consisted of three main phases. In the first phase, a data base of 33 test columns was developed and analyzed and five distinct apparent seismic damage states were defined. The damage states were correlated to measured seismic response parameters in terms of drift, frequency, strains, and yield and ultimate displacements. Fragility curves were developed and applied for two case studies in performance-based design (PBD) and performance-based assessment (PBA) of bridge columns. Comprehensive experimental and analytical studies were conducted in the second phase of the study. Two standard single columns, one standard two-column bent, and two substandard columns were tested on a shake table, repaired using CFRP fabrics, and retested on the shake table to evaluate the proposed repair procedure. The measured data were extensively analyzed to investigate the performance of the repaired columns compared to the original column responses. It was concluded that the strength and ductility of the standard columns were successfully restored and those of sub-standard columns were upgraded to the current seismic standards after the repair. However, the stiffness was not restored due to material degradation during the original column tests. Even though the repair process was done rapidly and was treated as "emergency" repair with implication that it was a temporary measure, it can be treated as a permanent repair as long as the stiffness of repaired columns is sufficient for non-seismic loading. In the analytical studies, extensive static and dynamic nonlinear analyses were performed on the column models and a simple analytical method was developed for the repaired columns to account for stiffness degradation. Based on the results from the experimental and analytical studies, repair design recommendations were developed in the third phase to aid bridge engineers in quickly designing the number of layers of CFRP layers based on the apparent damage and basic information about the column fixity, size, and reinforcement.

Book Effect of Cumulative Seismic Damage and Corrosion on Life cycle Cost of Reinforced Concrete Bridges

Download or read book Effect of Cumulative Seismic Damage and Corrosion on Life cycle Cost of Reinforced Concrete Bridges written by Ramesh Kumar and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridge design should take into account not only safety and functionality, but also the cost effectiveness of investments throughout a bridge life-cycle. This work presents a probabilistic approach to compute the life-cycle cost (LCC) of corroding reinforced concrete (RC) bridges in earthquake prone regions. The approach is developed by combining cumulative seismic damage and damage associated to corrosion due to environmental conditions. Cumulative seismic damage is obtained from a low-cycle fatigue analysis. Chloride-induced corrosion of steel reinforcement is computed based on Fick's second law of diffusion. The proposed methodology accounts for the uncertainties in the ground motion parameters, the distance from source, the seismic demand on the bridge, and the corrosion initiation time. The statistics of the accumulated damage and the cost of repairs throughout the bridge life-cycle are obtained by Monte-Carlo simulation. As an illustration of the proposed approach, the effect of design parameters on the life-cycle cost of an example RC bridge is studied. The results are shown to be valuable in better estimating the condition of existing bridges (i.e., total accumulated damage at any given time) and, therefore, can help schedule inspection and maintenance programs. In addition, by taking into consideration the deterioration process over a bridge life-cycle, it is possible to make an estimate of the optimum design parameters by minimizing, for example, the expected cost throughout the life of the structure.

Book Life Cycle Analysis and Assessment in Civil Engineering  Towards an Integrated Vision

Download or read book Life Cycle Analysis and Assessment in Civil Engineering Towards an Integrated Vision written by Robby Caspeele and published by CRC Press. This book was released on 2018-10-31 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the papers presented at IALCCE2018, the Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE2018), held in Ghent, Belgium, October 28-31, 2018. It consists of a book of extended abstracts and a USB device with full papers including the Fazlur R. Khan lecture, 8 keynote lectures, and 390 technical papers from all over the world. Contributions relate to design, inspection, assessment, maintenance or optimization in the framework of life-cycle analysis of civil engineering structures and infrastructure systems. Life-cycle aspects that are developed and discussed range from structural safety and durability to sustainability, serviceability, robustness and resilience. Applications relate to buildings, bridges and viaducts, highways and runways, tunnels and underground structures, off-shore and marine structures, dams and hydraulic structures, prefabricated design, infrastructure systems, etc. During the IALCCE2018 conference a particular focus is put on the cross-fertilization between different sub-areas of expertise and the development of an overall vision for life-cycle analysis in civil engineering. The aim of the editors is to provide a valuable source of cutting edge information for anyone interested in life-cycle analysis and assessment in civil engineering, including researchers, practising engineers, consultants, contractors, decision makers and representatives from local authorities.

Book A Damage Assessment Method for Post Seismic Structural Health Monitoring of Concrete Bridges

Download or read book A Damage Assessment Method for Post Seismic Structural Health Monitoring of Concrete Bridges written by Seyed Asadollah Bassam and published by . This book was released on 2008 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Rapid Repair of Seismically Vulnerable Bridge Columns Following Earthquake Induced Damage

Download or read book Rapid Repair of Seismically Vulnerable Bridge Columns Following Earthquake Induced Damage written by and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Cascadia Subduction Zone (CSZ) earthquake has a high probability of occurrence within our lifetime, threatening bridges across the Pacific Northwest. Damage is expected to be geographically spread throughout the region and will have a nearly simultaneous impact on transportation through several important corridors. While bridge repair and replacement will ultimately be needed, priority will be placed on resuming mobility such that repairs will need to be implemented quickly. In an effort to anticipate this need, a repair method is being developed for rapid repair with the goal of achieving semi-permanent installation that also considers the different bridge damage states for future earthquakes. The proposed repair involves encasing the damaged column in a steel jacket which is then anchored to the foundation through easily replaceable ductile fuse hold-downs. The design objective is to isolate all inelastic strains to the hold-downs thus creating a low-damage solution. Full-scale cyclic tests were conducted to investigate the cyclic performance on substandard column-to-foundation specimens. The proposed repair was applied to the damaged column and the specimen was then re-tested using the cyclic loading that is representative of CSZ demands. The experiments validated the design goal of achieving restored or controlled strength, while also exhibiting no additional damage and self-centering behavior. The experiments have shown the potential of this methodology to rapidly repair earthquake damaged columns with a relatively generic approach.

Book Safety  Reliability  Risk and Life Cycle Performance of Structures and Infrastructures

Download or read book Safety Reliability Risk and Life Cycle Performance of Structures and Infrastructures written by George Deodatis and published by CRC Press. This book was released on 2014-02-10 with total page 1112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Safety, Reliability, Risk and Life-Cycle Performance of Structures and Infrastructures contains the plenary lectures and papers presented at the 11th International Conference on STRUCTURAL SAFETY AND RELIABILITY (ICOSSAR2013, New York, NY, USA, 16-20 June 2013), and covers major aspects of safety, reliability, risk and life-cycle performance of str

Book Maintenance  Monitoring  Safety  Risk and Resilience of Bridges and Bridge Networks

Download or read book Maintenance Monitoring Safety Risk and Resilience of Bridges and Bridge Networks written by Tulio Nogueira Bittencourt and published by CRC Press. This book was released on 2016-11-17 with total page 946 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maintenance, Monitoring, Safety, Risk and Resilience of Bridges and Bridge Networks contains the lectures and papers presented at the Eighth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2016), held in Foz do Iguaçu, Paraná, Brazil, 26-30 June, 2016. This volume consists of a book of extended abstracts and a DVD containing the full papers of 369 contributions presented at IABMAS 2016, including the T.Y. Lin Lecture, eight Keynote Lectures, and 360 technical papers from 38 countries. The contributions deal with the state-of-the-art as well as emerging concepts and innovative applications related to all main aspects of bridge maintenance, safety, management, resilience and sustainability. Major topics covered include: advanced materials, ageing of bridges, assessment and evaluation, bridge codes, bridge diagnostics, bridge management systems, composites, damage identification, design for durability, deterioration modeling, earthquake and accidental loadings, emerging technologies, fatigue, field testing, financial planning, health monitoring, high performance materials, inspection, life-cycle performance and cost, load models, maintenance strategies, non-destructive testing, optimization strategies, prediction of future traffic demands, rehabilitation, reliability and risk management, repair, replacement, residual service life, resilience, robustness, safety and serviceability, service life prediction, strengthening, structural integrity, and sustainability. This volume provides both an up-to-date overview of the field of bridge engineering as well as significant contributions to the process of making more rational decisions concerning bridge maintenance, safety, serviceability, resilience, sustainability, monitoring, risk-based management, and life-cycle performance using traditional and emerging technologies for the purpose of enhancing the welfare of society. It will serve as a valuable reference to all involved with bridge structure and infrastructure systems, including students, researchers and engineers from all areas of bridge engineering.