EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Multi Period Trading Via Convex Optimization

Download or read book Multi Period Trading Via Convex Optimization written by Stephen Boyd and published by . This book was released on 2017-07-28 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph collects in one place the basic definitions, a careful description of the model, and discussion of how convex optimization can be used in multi-period trading, all in a common notation and framework.

Book Machine Learning for Asset Managers

Download or read book Machine Learning for Asset Managers written by Marcos M. López de Prado and published by Cambridge University Press. This book was released on 2020-04-22 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML's strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to "learn" complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specification search, robust to multicollinearity and other substitution effects.

Book Linear and Mixed Integer Programming for Portfolio Optimization

Download or read book Linear and Mixed Integer Programming for Portfolio Optimization written by Renata Mansini and published by Springer. This book was released on 2015-06-10 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents solutions to the general problem of single period portfolio optimization. It introduces different linear models, arising from different performance measures, and the mixed integer linear models resulting from the introduction of real features. Other linear models, such as models for portfolio rebalancing and index tracking, are also covered. The book discusses computational issues and provides a theoretical framework, including the concepts of risk-averse preferences, stochastic dominance and coherent risk measures. The material is presented in a style that requires no background in finance or in portfolio optimization; some experience in linear and mixed integer models, however, is required. The book is thoroughly didactic, supplementing the concepts with comments and illustrative examples.

Book The Financial Mathematics of Market Liquidity

Download or read book The Financial Mathematics of Market Liquidity written by Olivier Gueant and published by CRC Press. This book was released on 2016-03-30 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is among the first to present the mathematical models most commonly used to solve optimal execution problems and market making problems in finance. The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making presents a general modeling framework for optimal execution problems-inspired from the Almgren-Chriss app

Book The Science of Algorithmic Trading and Portfolio Management

Download or read book The Science of Algorithmic Trading and Portfolio Management written by Robert Kissell and published by Academic Press. This book was released on 2013-10-01 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Science of Algorithmic Trading and Portfolio Management, with its emphasis on algorithmic trading processes and current trading models, sits apart from others of its kind. Robert Kissell, the first author to discuss algorithmic trading across the various asset classes, provides key insights into ways to develop, test, and build trading algorithms. Readers learn how to evaluate market impact models and assess performance across algorithms, traders, and brokers, and acquire the knowledge to implement electronic trading systems. This valuable book summarizes market structure, the formation of prices, and how different participants interact with one another, including bluffing, speculating, and gambling. Readers learn the underlying details and mathematics of customized trading algorithms, as well as advanced modeling techniques to improve profitability through algorithmic trading and appropriate risk management techniques. Portfolio management topics, including quant factors and black box models, are discussed, and an accompanying website includes examples, data sets supplementing exercises in the book, and large projects. - Prepares readers to evaluate market impact models and assess performance across algorithms, traders, and brokers. - Helps readers design systems to manage algorithmic risk and dark pool uncertainty. - Summarizes an algorithmic decision making framework to ensure consistency between investment objectives and trading objectives.

Book Quantitative Portfolio Management

Download or read book Quantitative Portfolio Management written by Michael Isichenko and published by John Wiley & Sons. This book was released on 2021-09-10 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover foundational and advanced techniques in quantitative equity trading from a veteran insider In Quantitative Portfolio Management: The Art and Science of Statistical Arbitrage, distinguished physicist-turned-quant Dr. Michael Isichenko delivers a systematic review of the quantitative trading of equities, or statistical arbitrage. The book teaches you how to source financial data, learn patterns of asset returns from historical data, generate and combine multiple forecasts, manage risk, build a stock portfolio optimized for risk and trading costs, and execute trades. In this important book, you’ll discover: Machine learning methods of forecasting stock returns in efficient financial markets How to combine multiple forecasts into a single model by using secondary machine learning, dimensionality reduction, and other methods Ways of avoiding the pitfalls of overfitting and the curse of dimensionality, including topics of active research such as “benign overfitting” in machine learning The theoretical and practical aspects of portfolio construction, including multi-factor risk models, multi-period trading costs, and optimal leverage Perfect for investment professionals, like quantitative traders and portfolio managers, Quantitative Portfolio Management will also earn a place in the libraries of data scientists and students in a variety of statistical and quantitative disciplines. It is an indispensable guide for anyone who hopes to improve their understanding of how to apply data science, machine learning, and optimization to the stock market.

Book Optimization Methods in Finance

Download or read book Optimization Methods in Finance written by Gerard Cornuejols and published by Cambridge University Press. This book was released on 2006-12-21 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization models play an increasingly important role in financial decisions. This is the first textbook devoted to explaining how recent advances in optimization models, methods and software can be applied to solve problems in computational finance more efficiently and accurately. Chapters discussing the theory and efficient solution methods for all major classes of optimization problems alternate with chapters illustrating their use in modeling problems of mathematical finance. The reader is guided through topics such as volatility estimation, portfolio optimization problems and constructing an index fund, using techniques such as nonlinear optimization models, quadratic programming formulations and integer programming models respectively. The book is based on Master's courses in financial engineering and comes with worked examples, exercises and case studies. It will be welcomed by applied mathematicians, operational researchers and others who work in mathematical and computational finance and who are seeking a text for self-learning or for use with courses.

Book Modern Artificial Intelligence and Data Science

Download or read book Modern Artificial Intelligence and Data Science written by Abdellah Idrissi and published by Springer Nature. This book was released on 2023-08-25 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Book, through its various chapters presenting the Recent Advances in Modern Artificial Intelligence and Data Science as well as their Applications, aims to set up lasting and real applications necessary for both academics and professionals. Readers find here the fruit of many research ideas covering a wide range of application areas that can be explored for the advancement of their research or the development of their business. These ideas present new techniques and trends projected in various areas of daily life. Through its proposals of new ideas, this Book serves as a real guide both for experienced readers and for beginners in these specialized fields. It also covers several applications that explain how they can support some societal challenges such as education, health, agriculture, clean energy, business, environment, security and many more. This Book is therefore intended for Designers, Developers, Decision-Makers, Consultants, Engineers, and of course Master's/Doctoral Students, Researchers and Academics.

Book Convex Optimization

Download or read book Convex Optimization written by Stephen P. Boyd and published by Cambridge University Press. This book was released on 2004-03-08 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Book Forecasting Expected Returns in the Financial Markets

Download or read book Forecasting Expected Returns in the Financial Markets written by Stephen Satchell and published by Elsevier. This book was released on 2011-04-08 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting returns is as important as forecasting volatility in multiple areas of finance. This topic, essential to practitioners, is also studied by academics. In this new book, Dr Stephen Satchell brings together a collection of leading thinkers and practitioners from around the world who address this complex problem using the latest quantitative techniques.*Forecasting expected returns is an essential aspect of finance and highly technical *The first collection of papers to present new and developing techniques *International authors present both academic and practitioner perspectives

Book Financial Risk Modelling and Portfolio Optimization with R

Download or read book Financial Risk Modelling and Portfolio Optimization with R written by Bernhard Pfaff and published by John Wiley & Sons. This book was released on 2016-08-16 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial Risk Modelling and Portfolio Optimization with R, 2nd Edition Bernhard Pfaff, Invesco Global Asset Allocation, Germany A must have text for risk modelling and portfolio optimization using R. This book introduces the latest techniques advocated for measuring financial market risk and portfolio optimization, and provides a plethora of R code examples that enable the reader to replicate the results featured throughout the book. This edition has been extensively revised to include new topics on risk surfaces and probabilistic utility optimization as well as an extended introduction to R language. Financial Risk Modelling and Portfolio Optimization with R: Demonstrates techniques in modelling financial risks and applying portfolio optimization techniques as well as recent advances in the field. Introduces stylized facts, loss function and risk measures, conditional and unconditional modelling of risk; extreme value theory, generalized hyperbolic distribution, volatility modelling and concepts for capturing dependencies. Explores portfolio risk concepts and optimization with risk constraints. Is accompanied by a supporting website featuring examples and case studies in R. Includes updated list of R packages for enabling the reader to replicate the results in the book. Graduate and postgraduate students in finance, economics, risk management as well as practitioners in finance and portfolio optimization will find this book beneficial. It also serves well as an accompanying text in computer-lab classes and is therefore suitable for self-study.

Book Automated Option Trading

Download or read book Automated Option Trading written by Sergey Izraylevich Ph.D. and published by FT Press. This book was released on 2012-03-12 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first and only book of its kind, Automated Options Trading describes a comprehensive, step-by-step process for creating automated options trading systems. Using the authors’ techniques, sophisticated traders can create powerful frameworks for the consistent, disciplined realization of well-defined, formalized, and carefully-tested trading strategies based on their specific requirements. Unlike other books on automated trading, this book focuses specifically on the unique requirements of options, reflecting philosophy, logic, quantitative tools, and valuation procedures that are completely different from those used in conventional automated trading algorithms. Every facet of the authors’ approach is optimized for options, including strategy development and optimization; capital allocation; risk management; performance measurement; back-testing and walk-forward analysis; and trade execution. The authors’ system reflects a continuous process of valuation, structuring and long-term management of investment portfolios (not just individual instruments), introducing systematic approaches for handling portfolios containing option combinations related to different underlying assets. With these techniques, it is finally possible to effectively automate options trading at the portfolio level. This book will be an indispensable resource for serious options traders working individually, in hedge funds, or in other institutions.

Book Dynamic Optimization  Second Edition

Download or read book Dynamic Optimization Second Edition written by Morton I. Kamien and published by Courier Corporation. This book was released on 2013-04-17 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its initial publication, this text has defined courses in dynamic optimization taught to economics and management science students. The two-part treatment covers the calculus of variations and optimal control. 1998 edition.

Book Quantitative Management of Bond Portfolios

Download or read book Quantitative Management of Bond Portfolios written by Lev Dynkin and published by Princeton University Press. This book was released on 2020-05-26 with total page 998 pages. Available in PDF, EPUB and Kindle. Book excerpt: The practice of institutional bond portfolio management has changed markedly since the late 1980s in response to new financial instruments, investment methodologies, and improved analytics. Investors are looking for a more disciplined, quantitative approach to asset management. Here, five top authorities from a leading Wall Street firm provide practical solutions and feasible methodologies based on investor inquiries. While taking a quantitative approach, they avoid complex mathematical derivations, making the book accessible to a wide audience, including portfolio managers, plan sponsors, research analysts, risk managers, academics, students, and anyone interested in bond portfolio management. The book covers a range of subjects of concern to fixed-income portfolio managers--investment style, benchmark replication and customization, managing credit and mortgage portfolios, managing central bank reserves, risk optimization, and performance attribution. The first part contains empirical studies of security selection versus asset allocation, index replication with derivatives and bonds, optimal portfolio diversification, and long-horizon performance of assets. The second part covers portfolio management tools for risk budgeting, bottom-up risk modeling, performance attribution, innovative measures of risk sensitivities, and hedging risk exposures. A first-of-its-kind publication from a team of practitioners at the front lines of financial thinking, this book presents a winning combination of mathematical models, intuitive examples, and clear language.

Book Robust Optimization

    Book Details:
  • Author : Aharon Ben-Tal
  • Publisher : Princeton University Press
  • Release : 2009-08-10
  • ISBN : 1400831059
  • Pages : 565 pages

Download or read book Robust Optimization written by Aharon Ben-Tal and published by Princeton University Press. This book was released on 2009-08-10 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.

Book The Mathematics of Money Management

Download or read book The Mathematics of Money Management written by Ralph Vince and published by John Wiley & Sons. This book was released on 1992-08-04 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every futures, options, and stock markets trader operates under a set of highly suspect rules and assumptions. Are you risking your career on yours? Exceptionally clear and easy to use, The Mathematics of Money Management substitutes precise mathematical modeling for the subjective decision-making processes many traders and serious investors depend on. Step-by-step, it unveils powerful strategies for creating and using key money management formulas--based on the rules of probability and modern portfolio theory--that maximizes the potential gains for the level of risk you are assuming. With them, you'll determine the payoffs and consequences of any potential trading decision and obtain the highest potential growth for your specified level of risk. You'll quickly decide: What markets to trade in and at what quantities When to add or subtract funds from an account How to reinvest trading profits for maximum yield The Mathematics of Money Management provides the missing element in modern portfolio theory that weds optimal f to the optimal portfolio.

Book Recent Advances in Reinforcement Learning

Download or read book Recent Advances in Reinforcement Learning written by Leslie Pack Kaelbling and published by Springer Science & Business Media. This book was released on 1996-03-31 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent Advances in Reinforcement Learning addresses current research in an exciting area that is gaining a great deal of popularity in the Artificial Intelligence and Neural Network communities. Reinforcement learning has become a primary paradigm of machine learning. It applies to problems in which an agent (such as a robot, a process controller, or an information-retrieval engine) has to learn how to behave given only information about the success of its current actions. This book is a collection of important papers that address topics including the theoretical foundations of dynamic programming approaches, the role of prior knowledge, and methods for improving performance of reinforcement-learning techniques. These papers build on previous work and will form an important resource for students and researchers in the area. Recent Advances in Reinforcement Learning is an edited volume of peer-reviewed original research comprising twelve invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 22, Numbers 1, 2 and 3).