EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Porous Silicon Nanomaterials for Bioimaging and Nanomedicine

Download or read book Porous Silicon Nanomaterials for Bioimaging and Nanomedicine written by Jinyoung Kang and published by . This book was released on 2018 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is increased interest in porous silicon nanomaterials for biomedical applications due to their biodegradability, their biocompatibility, and their intrinsic photoluminescence. This thesis describes cargo loading chemistry, surface chemistry, molecularly targeted delivery and bioimaging applications using porous silicon nanomaterials. After a brief introduction to porous silicon materials for biomedical applications, Chapter 2 describes a single-step procedure to simultaneously load and protect a model siRNA therapeutic in porous silicon nanoparticles (pSiNPs). Exogenous calcium ions precipitate with locally generated silicic acid to form calcium silicate, which serves to encapsulate the siRNA payload in pSiNPs. The target gene knockdown efficiency in vitro and target tissue accumulation of delivered siRNA in vivo are demonstrated. Chapter 3 presents a facile chemical modification of the surface of the hydroxylated silicon nanostructure. The reaction, a ring-opening heterocyclic silane "click" reaction, is a rapid and efficient means to obtain high surface coverage while preserving the open pore structure and intrinsic photoluminescence of the original silicon nanostructure. This chemistry is sufficiently mild to maintain the activity of payload proteins. Chapter 4 presents the example of pSiNPs as an imaging agent, which are targeted to tumor tissues in vivo using an iRGD peptide targeting probe, and the nanoparticles are imaged by two-photon microscopy. Superior photostability and low systemic toxicity are observed. Chapter 5 discusses enhanced photoacoustic signals that can be obtained from indocyanine green (ICG) when it is encapsulated in pSiNPs. The photoacoustic response from ICG is enhanced 17-fold when it is sealed in pSiNPs. The substantially improved performance is attributed to the low thermal conductivity of pSiNPs and their ability to protect loaded ICG from photolytic degradation.

Book Porous Silicon for Biomedical Applications

Download or read book Porous Silicon for Biomedical Applications written by Hélder A. Santos and published by Woodhead Publishing. This book was released on 2021-10-23 with total page 646 pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous Silicon for Biomedical Applications, Second Edition, provides an updated guide to the diverse range of biomedical applications of porous silicon, from biosensing and imaging to tissue engineering and cancer therapy. Across biomedical disciplines, there is an ongoing search for biomaterials that are biocompatible, modifiable, structurally sound, and versatile. Porous silicon possesses a range of properties that make it ideal for a variety of biomedical applications, such as controllable geometry, tunable nanoporous structure, large pore volume/high specific surface area, and versatile surface chemistry. This book provides a fully updated and detailed overview of the range of biomedical applications for porous silicon. Part One offers the reader a helpful insight into the fundamentals and beneficial properties of porous silicon, including thermal properties and stabilization, photochemical and nonthermal chemical modification, protein modification, and biocompatibility. The book then builds on the systematic detailing of each biomedical application using porous silicon, from bioimaging and sensing to drug delivery and tissue engineering. This new edition also includes new chapters on in-vivo assessment of porous silicon, photodynamic and photothermal therapy, micro- and nanoneedles, Raman imaging, cancer immunotherapy, and more. With its acclaimed editor and international team of expert contributors, Porous Silicon for Biomedical Applications, Second Edition, is a technical resource and indispensable guide for all those involved in the research, development, and application of porous silicon and other biomaterials, while providing a comprehensive introduction for students and academics interested in this field. - Reviews the fundamental aspects of porous silicon, including the fabrication and unique properties of this useful material. - Discusses a broad selection of biomedical applications, offering a detailed insight into the benefits of porous silicon in both research and clinical settings. - Includes fully updated content from the previous edition, as well as brand new chapters, covering topics such as porous silicon micro- and nanoneedles, and cancer immunotherapy.

Book Silicon Nano biotechnology

Download or read book Silicon Nano biotechnology written by Yao He and published by Springer Science & Business Media. This book was released on 2014-04-02 with total page 113 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the latest advances in the development of silicon nano-biotechnology for biological and biomedical applications, which include biosensing, bioimaging, and cancer therapy. In this book, newly developed silicon nano-biotechnology and its biomedical applications are systematically introduced. For instance, fluorescent silicon nanoparticles, serving as novel high-performance biological nanoprobes, are superbly suited to real-time and long-term bioimaging. Silicon nanowire-based sensing platform is especially capable of sensitive, specific, and multiplexed detection of various biological species. Silicon-based nanocarriers with ultra-high drug-loading capacity are highly efficacious for in vitro and in vivo cancer therapies. This book is intended for readers who are interested in the design of functional silicon nanostructures and their biological and biomedical applications. It uses silicon nanoparticles and silicon nanowires as models and discusses topics ranging from their synthesis to their biological applications, the goal being to highlight these exciting achievements as starting points in the field of silicon nano-biotechnology. Yao He is a Professor at Institute of Functional Nano&Soft Materials (FUNSOM), Soochow University, China. Yuanyuan Su is an Associate Professor at Institute of Functional Nano&Soft Materials (FUNSOM), Soochow University, China.

Book Drug Delivery and Biomedical Applications of Porous Silicon Based Nanocarriers

Download or read book Drug Delivery and Biomedical Applications of Porous Silicon Based Nanocarriers written by Rajendra Awasthi and published by Elsevier. This book was released on 2025-05-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drug Delivery and Biomedical Applications of Porous Silicon-Based Nanocarriers delivers an up-to-date and complete overview of the range of biomedical applications for porous silicon nanomaterials, with a special emphasis on drug delivery. This book introduces the fundamentals and beneficial properties of porous silicon, including thermal properties and stabilization, photochemical and nonthermal chemical modification, protein modification, and biocompatibility. The book then builds on the systematic detailing of each biomedical application using porous silicon, such as vaccine development, drug delivery, and tissue engineering. It also contains new insights on in-vivo assessment of porous silicon, photodynamic and photothermal therapy, micro- and nanoneedles, cancer immunotherapy, and more. Drug Delivery and Biomedical Applications of Porous Silicon-Based Nanocarriers is of interest to researchers in the fields of materials science, nanotechnology, pharmaceutical science, biomedical engineering, and cancer research.

Book Porous Silicon  From Formation to Application  Biomedical and Sensor Applications  Volume Two

Download or read book Porous Silicon From Formation to Application Biomedical and Sensor Applications Volume Two written by Ghenadii Korotcenkov and published by CRC Press. This book was released on 2016-01-05 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous silicon is rapidly attracting increasing interest from various fields, including optoelectronics, microelectronics, photonics, medicine, chemistry, and biosensing. This nanostructured and biodegradable material has a range of unique properties that make it ideal for many applications. For example, the pores and surface chemistry of the mater

Book Semiconducting Silicon Nanowires for Biomedical Applications

Download or read book Semiconducting Silicon Nanowires for Biomedical Applications written by Jeffery L. Coffer and published by Woodhead Publishing. This book was released on 2021-09-14 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: In its second, extensively revised second edition, Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and biomedical applications of this key material. The book begins by reviewing the basics of growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires. Attention then turns to use of these structures for tissue engineering and delivery applications, followed by detection and sensing. Reflecting the evolution of this multidisciplinary subject, several new key topics are highlighted, including our understanding of the cell-nanowire interface, latest advances in associated morphologies (including silicon nanoneedles and nanotubes for therapeutic delivery), and significantly, the status of silicon nanowire commercialization in biotechnology. Semiconducting Silicon Nanowires for Biomedical Applications is a comprehensive resource for biomaterials scientists who are focused on biosensors, drug delivery, and the next generation of nano-biotech platforms that require a detailed understanding of the cell-nanowire interface, along with researchers and developers in industry and academia who are concerned with nanoscale biomaterials, in particular electronically-responsive structures. - Reviews the growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires - Describes silicon nanowires for tissue engineering and delivery applications, including cellular binding & internalization, tissue engineering scaffolds, mediated differentiation of stem cells, and silicon nanoneedles & nanotubes for delivery of small molecule / biologic-based therapeutics - Highlights the use of silicon nanowires for detection and sensing - Presents a detailed description of our current understanding of the cell-nanowire interface - Covers the current status of commercial development of silicon nanowire-based platforms

Book Silicon based Nanomaterials

Download or read book Silicon based Nanomaterials written by Handong Li and published by Springer Science & Business Media. This book was released on 2013-10-02 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A variety of nanomaterials have excellent optoelectronic and electronic properties for novel device applications. At the same time, and with advances in silicon integrated circuit (IC) techniques, compatible Si-based nanomaterials hold promise of applying the advantages of nanomaterials to the conventional IC industry. This book focuses not only on silicon nanomaterials, but also summarizes up-to-date developments in the integration of non-silicon nanomaterials on silicon. The book showcases the work of leading researchers from around the world who address such key questions as: Which silicon nanomaterials can give the desired optical, electrical, and structural properties, and how are they prepared? What nanomaterials can be integrated on to a silicon substrate and how is this accomplished? What Si-based nanomaterials may bring a breakthrough in this field? These questions address the practical issues associated with the development of nanomaterial-based devices in applications areas such as solar cells, luminous devices for optical communication (detectors, lasers), and high mobility transistors. Investigation of silicon-based nanostructures is of great importance to make full use of nanomaterials for device applications. Readers will receive a comprehensive view of Si-based nanomaterials, which will hopefully stimulate interest in developing novel nanostructures or techniques to satisfy the requirements of high performance device applications. The goal is to make nanomaterials the main constituents of the high performance devices of the future.

Book Silicon Based Hybrid Nanoparticles

Download or read book Silicon Based Hybrid Nanoparticles written by Sabu Thomas and published by Elsevier. This book was released on 2021-09-24 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon-Based Hybrid Nanoparticles: Fundamentals, Properties, and Applications focuses on the fundamental principles and promising applications of silicon-based hybrid nanoparticles in nanoelectronics, energy storage/conversion, catalysis, sensors, biomedicine, environment and imaging. This book is an important reference source for materials scientists and engineers who are seeking to understand more about the major properties and applications of silicon-based hybrid nanoparticles. As the hybridization of silicon nanoparticles with other semiconductors or metal oxides nanoparticles may exhibit superior features, when compared to lone, individual nanoparticles, this book provides the latest insights. In addition, the silicon/iron oxide hybrid nanoparticles also possess excellent fluorescence, super-paramagnetism, and biocompatibility that can be effectively used for the diagnostic imaging system in vivo. Similarly, gold-silicon nanohybrids could be used as highly efficient near-infrared hyperthermia agents for cancer cell destruction. - Outlines the major thermal, electrical, optical, magnetic and toxic properties of silicon-based hybrid nanoparticles - Describes major applications in energy, environmental science and catalysis - Assesses the major challenges to manufacturing silicon-based nanostructured materials on an industrial scale

Book Mesoporous Silica based Nanomaterials and Biomedical Applications   Part A

Download or read book Mesoporous Silica based Nanomaterials and Biomedical Applications Part A written by and published by Academic Press. This book was released on 2018-09-20 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer Therapy and Diagnosis, Part A, Volume 43 in The Enzymes series, highlights new advances in the field, with this new volume presenting interesting chapters on Mesoporous silica nanoparticle synthesis, Periodic mesoporous organosilica, Nanovalves and other nanomachine-equipped nanoparticles and controlled release, Two-photon light control and photodynamic therapy, Biodegradable PMO nanoparticles, Cationic mesoporous silica and protein delivery, Drug loading, stimuli-responsive delivery and cancer treatment, Animal models and cancer therapy, siRNA delivery and TWIST shutdown for ovarian cancer treatment, and TBC (mesoporous silica nanoparticles and cancer therapy or biodistribution of MSN). - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in The Enzymes series - Updated release includes the latest information on Cancer Therapy and Diagnosis

Book Nanooncology

Download or read book Nanooncology written by Gil Gonçalves and published by Springer. This book was released on 2018-06-01 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic overview of the most relevant nanomaterials and their respective intrinsic properties that have been highly explored by the scientific community and pharmaceutical companies in several different modalities for cancer therapy and bioimaging. The chapters explore the synergistic effects provided by the different nanostructured materials and highlight the main in vitro and in vivo therapeutic achievements on cancer. This work also provides relevant discussion about the recent progresses and future challenges that nanotechnology faces on the conception of more efficient nanoformulations against primary tumors, circulating cancer cells and metastases.

Book Handbook of Materials for Nanomedicine

Download or read book Handbook of Materials for Nanomedicine written by Vladimir Torchilin and published by CRC Press. This book was released on 2020-03-12 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the fast-developing field of nanomedicine, a broad variety of materials have been used for the development of advanced delivery systems for drugs, genes, and diagnostic agents. With the recent breakthroughs in the field, we are witnessing a new age of disease management, which is governed by precise regulation of dosage and delivery. This book presents the advances in the use of lipid-based and inorganic nanomaterials for medical imaging, diagnosis, theranostics, and drug delivery. The materials discussed include liposome-scaffold systems, elastic liposomes, targeted liposomes, solid lipid nanoparticles, lipoproteins, exosomes, porous inorganic nanomaterials, silica nanoparticles, and inorganic nanohybrids. The book provides all available information about them and describes in detail their advantages and disadvantages and the areas where they could be utilized successfully.

Book Silicon Nanomaterials Sourcebook

Download or read book Silicon Nanomaterials Sourcebook written by Klaus D. Sattler and published by CRC Press. This book was released on 2017-07-28 with total page 643 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive tutorial guide to silicon nanomaterials spans from fundamental properties, growth mechanisms, and processing of nanosilicon to electronic device, energy conversion and storage, biomedical, and environmental applications. It also presents core knowledge with basic mathematical equations, tables, and graphs in order to provide the reader with the tools necessary to understand the latest technology developments. From low-dimensional structures, quantum dots, and nanowires to hybrid materials, arrays, networks, and biomedical applications, this Sourcebook is a complete resource for anyone working with this materials: Covers fundamental concepts, properties, methods, and practical applications. Focuses on one important type of silicon nanomaterial in every chapter. Discusses formation, properties, and applications for each material. Written in a tutorial style with basic equations and fundamentals included in an extended introduction. Highlights materials that show exceptional properties as well as strong prospects for future applications. Klaus D. Sattler is professor physics at the University of Hawaii, Honolulu, having earned his PhD at the Swiss Federal Institute of Technology (ETH) in Zurich. He was honored with the Walter Schottky Prize from the German Physical Society, and is the editor of the sister work also published by Taylor & Francis, Carbon Nanomaterials Sourcebook, as well as the acclaimed multi-volume Handbook of Nanophysics.

Book Biodegradable Porous Silicon Nanomaterials for Imaging and Treatment of Cancer

Download or read book Biodegradable Porous Silicon Nanomaterials for Imaging and Treatment of Cancer written by Luo Gu and published by . This book was released on 2012 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cancer is the second leading cause of death, claiming ~0.56 million lives in the U.S. every year following heart diseases (~0.62 million). From 1991 to 2007, mortality associated with heart diseases decreased 39%; by contrast, the death rate of cancer only decreased by 17% in spite of intensive research and improved therapeutics. The stagnation of conventional medicine and the complexity of cancer demand new therapeutic strategies. As an emerging approach, the use of nanomaterials as cancer diagnostic and therapeutic agents has shown promising results due to their unique physical and chemical properties. To date, more than two dozen nanoparticle-based products have been approved for clinical use and they show advantages over conventional therapeutics. However, translation of many other nanomaterials has been impeded due to concerns over toxicity and biodegradability. This dissertation presents the development of biodegradable luminescent porous silicon nanomaterials and their potential applications for imaging and treatment of cancer. Chapter 3 presents a diagnostic application of LPSiNPs. Time-gated fluorescence imaging of tumors using LPSiNPs with long emission lifetime is developed. This technique can effectively eliminate interference from short-lived tissue autofluorescence and improve the detection sensitivity. Chapter 4-6 demonstrate the therapeutic applications of porous silicon nanomaterials. In Chapter 4, magnetically-guided delivery of anticancer drug to cancer cells in vitro is achieved using magnetic, luminescent porous Si microparticles. Chapter 5 demonstrates that porous silicon nanoparticles can be used as photosensitizer and generate cytotoxic singlet oxygen when irradiated by light. The phototoxicity of the nanoparticles against cancer cells is also studied. Finally, the use of LPSiNPs for immune activation is investigated in Chapter 6.

Book Porous Silicon in Practice

Download or read book Porous Silicon in Practice written by M. J. Sailor and published by John Wiley & Sons. This book was released on 2012-01-09 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: By means of electrochemical treatment, crystalline silicon can be permeated with tiny, nanostructured pores that entirely change the characteristics and properties of the material. One prominent example of this can be seen in the interaction of porous silicon with living cells, which can be totally unwilling to settle on smooth silicon surfaces but readily adhere to porous silicon, giving rise to great hopes for such future applications as programmable drug delivery or advanced, braincontrolled prosthetics. Porous silicon research is active in the fields of sensors, tissue engineering, medical therapeutics and diagnostics, photovoltaics, rechargeable batteries, energetic materials, photonics, and MEMS (Micro Electro Mechanical Systems). Written by an outstanding, well-recognized expert in the field, this book provides detailed, step-by-step instructions to prepare and characterize the major types of porous silicon. It is intended for those new to the fi eld. Sampling of topics covered: * Principles of Etching Porous Silicon * Etch Cell Construction and Considerations * Photonic Crystals, Microcavities, and Bragg Stacks Etched in Silicon * Preparation of Free-standing Films and Particles of Porous Silicon * Preparation of Photoluminescent Nanoparticles from Porous Silicon * Preparation of Silicon Nanowires by Electrochemical Etch of Silicon * Surface Modifi cation Chemistry and Biochemistry * Measurement of Optical Properties * Measurement of Pore Size, Porosity, Thickness, Surface Area The whole is backed by a generous use of color photographs to illustrate the described procedures in detail, plus a bibliography of further literature pertinent to a wide range of application fi elds. For materials scientists, chemists, physicists, optical physicists, biomaterials scientists, neurobiologists, bioengineers, and graduate students in those fields, as well as those working in the semiconductor industry.

Book Silicon Nanomaterials Sourcebook

Download or read book Silicon Nanomaterials Sourcebook written by Klaus D. Sattler and published by CRC Press. This book was released on 2017-07-28 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive tutorial guide to silicon nanomaterials spans from fundamental properties, growth mechanisms, and processing of nanosilicon to electronic device, energy conversion and storage, biomedical, and environmental applications. It also presents core knowledge with basic mathematical equations, tables, and graphs in order to provide the reader with the tools necessary to understand the latest technology developments. From low-dimensional structures, quantum dots, and nanowires to hybrid materials, arrays, networks, and biomedical applications, this Sourcebook is a complete resource for anyone working with this materials: Covers fundamental concepts, properties, methods, and practical applications. Focuses on one important type of silicon nanomaterial in every chapter. Discusses formation, properties, and applications for each material. Written in a tutorial style with basic equations and fundamentals included in an extended introduction. Highlights materials that show exceptional properties as well as strong prospects for future applications. Klaus D. Sattler is professor physics at the University of Hawaii, Honolulu, having earned his PhD at the Swiss Federal Institute of Technology (ETH) in Zurich. He was honored with the Walter Schottky Prize from the German Physical Society, and is the editor of the sister work also published by Taylor & Francis, Carbon Nanomaterials Sourcebook, as well as the acclaimed multi-volume Handbook of Nanophysics.

Book Functionalized Porous Silicon for Applications in Chemical Sensing  Tumor Imaging and Drug Delivery

Download or read book Functionalized Porous Silicon for Applications in Chemical Sensing Tumor Imaging and Drug Delivery written by Sanahan Vijayakumar and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: For over 30 years, porous silicon as a material has been leveraged for its usefulness in biomedical and sensing applications. Its tunable structural features, low toxicity profile and readily modifiable surface render this material extremely useful for a wide variety of applications. By chemically modifying surface species, such as silicon hydrides and silicon oxides with silanes, the properties of porous silicon can be enhanced for its use for chemical sensing, biomedical imaging, and drug delivery. After a brief introduction to porous silicon materials, the first part of this dissertation details surface-modified porous silicon photonic crystals for the chemical sensing of toxic vapors and nerve agents. Chapter 2 utilizes a dual-peak porous silicon photonic crystal embedded with specific for the selective detection of hydrogen fluoride (HF), hydrogen cyanide (HCN), and the chemical nerve agent diisopropyl fluorophosphate (DFP). The pore walls are rendered hydrophobic with octadecylsilane to aid with the loading of the colorimetric molecules while being insensitive to humidity fluctuations. This provides a robust means to develop a remote detection system for chemical agents. Chapter 3 employs the same photonic crystal, modified, however, with a specialized protein-based gatekeeper that is rendered semi-permeable only in the presence of HCN. This is one of the first novel designs of a bio-inorganic sensor capable of detecting chemical agents with high specificity and precision. The second portion of the dissertation describes how surface-modified porous silicon nanoparticles can be applied in biomedical applications. The first project details the use of Anti-KIT protein DNA-aptamers decorated onto a fluorescently labelled porous silicon nanoparticle for the in vitro and in vivo imaging of gastrointestinal stromal tumors. This work provides an effective platform in which aptamer-conjugated porous silicon nanoparticle constructs can be used for the targeted imaging of KIT-expressing cancers. The final project utilizes hydrophobic porous silicon nanoparticles for the delivery of erucamide, a highly hydrophobic fatty acid amide, within the retina. By harnessing the versatility of porous silicon, erucamide's target cells and mechanism of neurotrophic action can be identified.

Book Electrochemically Engineered Nanoporous Materials

Download or read book Electrochemically Engineered Nanoporous Materials written by Dusan Losic and published by Springer. This book was released on 2015-07-18 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides in-depth knowledge about the fabrications, structures, properties and applications of three outstanding electrochemically engineered nanoporous materials including porous silicon, nanoporous alumina and nanotubular titania. The book integrates three major themes describing these materials. The first theme is on porous silicon reviewing the methods for preparation by electrochemical etching, properties and methods for surface functionalization relevant for biosensing applications. Biomedical applications of porous silicon are major focus, described in several chapters reviewing recent developments on bioanalysis, emerging capture probes and drug delivery. The second theme on nanoporous alumina starts with describing the concept of self-organized electrochemical process used for synthesis nanopore and nanotube structures of valve metal oxides and reviewing recent development and progress on this field. The following chapters are focused mainly on optical properties and biosensing application of nanoporous alumina providing the reader with the depth of understanding of the structure controlled optical and photonic properties and design of optical biosensing devices using different detection principles such as photoluminescence, surface plasmon resonance, reflective spectrometry, wave guiding, Raman scattering etc. The third theme is focused on nanotubular titania reviewing three key applications including photocatalysis, solar cells and drug delivery. The book represents an important resource for academics, researchers, industry professionals, post-graduate and high-level undergraduate students providing them with both an overview of the current state-of-the-art on these materials and their future developments.