EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Population Dynamics Based on Individual Stochasticity

Download or read book Population Dynamics Based on Individual Stochasticity written by Ryo Oizumi and published by Springer Nature. This book was released on 2022-09-17 with total page 107 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates that population structure and dynamics can be reconstructed by stochastic analysis. Population projection is usually based on age-structured population models. These models consist of age-dependent fertility and mortality, whereas birth and death processes generally arise from states of individuals. For example, a number of seeds are proportional to tree size, and amount of income and savings are the basis of decision making for birth behavior in human beings. Thus, even though individuals belong to an identical cohort, they have different fertility and mortality. To treat this kind of individual heterogeneity, stochastic state transitions are reasonable rather than the deterministic states. This book extends deterministic systems to stochastic systems specifically, constructing a state transition model represented by stochastic differential equations. The diffusion process generated by stochastic differential equations provides statistics determining population dynamics, i.e., heterogeneity is incorporated in population dynamics as its statistics. Applying this perspective to demography and evolutionary biology, we can consider the role of heterogeneity in life history or evolution. These concepts are provided to readers with explanations of stochastic analysis.

Book Stochastic Models for Structured Populations

Download or read book Stochastic Models for Structured Populations written by Sylvie Meleard and published by Springer. This book was released on 2015-09-03 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this contribution, several probabilistic tools to study population dynamics are developed. The focus is on scaling limits of qualitatively different stochastic individual based models and the long time behavior of some classes of limiting processes. Structured population dynamics are modeled by measure-valued processes describing the individual behaviors and taking into account the demographic and mutational parameters, and possible interactions between individuals. Many quantitative parameters appear in these models and several relevant normalizations are considered, leading to infinite-dimensional deterministic or stochastic large-population approximations. Biologically relevant questions are considered, such as extinction criteria, the effect of large birth events, the impact of environmental catastrophes, the mutation-selection trade-off, recovery criteria in parasite infections, genealogical properties of a sample of individuals. These notes originated from a lecture series on Structured Population Dynamics at Ecole polytechnique (France). Vincent Bansaye and Sylvie Méléard are Professors at Ecole Polytechnique (France). They are a specialists of branching processes and random particle systems in biology. Most of their research concerns the applications of probability to biodiversity, ecology and evolution.

Book Stochastic Population Dynamics in Ecology and Conservation

Download or read book Stochastic Population Dynamics in Ecology and Conservation written by Russell Lande and published by OUP Oxford. This book was released on 2003 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. Demographic and environmental stochasticity -- 2. Extinction dynamics -- 3. Age structure -- 4. Spatial structure -- 5. Population viability analysis -- 6. Sustainable harvesting -- 7. Species diversity -- 8. Community dynamics.

Book Sensitivity Analysis  Matrix Methods in Demography and Ecology

Download or read book Sensitivity Analysis Matrix Methods in Demography and Ecology written by Hal Caswell and published by Springer. This book was released on 2019-04-02 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book shows how to use sensitivity analysis in demography. It presents new methods for individuals, cohorts, and populations, with applications to humans, other animals, and plants. The analyses are based on matrix formulations of age-classified, stage-classified, and multistate population models. Methods are presented for linear and nonlinear, deterministic and stochastic, and time-invariant and time-varying cases. Readers will discover results on the sensitivity of statistics of longevity, life disparity, occupancy times, the net reproductive rate, and statistics of Markov chain models in demography. They will also see applications of sensitivity analysis to population growth rates, stable population structures, reproductive value, equilibria under immigration and nonlinearity, and population cycles. Individual stochasticity is a theme throughout, with a focus that goes beyond expected values to include variances in demographic outcomes. The calculations are easily and accurately implemented in matrix-oriented programming languages such as Matlab or R. Sensitivity analysis will help readers create models to predict the effect of future changes, to evaluate policy effects, and to identify possible evolutionary responses to the environment. Complete with many examples of the application, the book will be of interest to researchers and graduate students in human demography and population biology. The material will also appeal to those in mathematical biology and applied mathematics.

Book Stage structured Demography in Stochastic Environments

Download or read book Stage structured Demography in Stochastic Environments written by Raziel Joseph Davison and published by Stanford University. This book was released on 2011 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Populations living in natural environments experience fluctuations in environmental conditions that drive variability in demographic rates. This dissertation develops new and existing mathematical methods for studying environmental stochasticity and uses these tools to investigate the role of environmental stochasticity in driving observed population dynamics and plant life history evolution. In the first two chapters I develop new approaches to a classic method in population biology, the life table response experiment (LTRE). Whereas existing methods used time-averaged demographic rates and deterministic sensitivities to decompose observed differences in population growth rates, this new method allows estimation of the contributions to those differences made by variances in demographic rates as well as by mean rate values. I use this stochastic LTRE to show how differential variability in the vital rates of Anthyllis vulneraria (kidney vetch) contribute to differences in the population growth rates of nine populations growing in southwest Belgium; we also show how the effects of demographic rate variability depend on soil depth, where the greater moisture retention of deeper soils buffers populations against the otherwise negative effects of demographic variability. The second chapter provides a different approach to LTRE that uses an iterated two-factor decomposition of the small noise approximation of the stochastic population growth rate to quantify contributions to that growth rate made by: (i) mean vital rates, (ii) temporal variability in vital rates, (iii) elasticities of the population growth rate to individual vital rates, and (iv) correlations between vital rates across the study period. Contributions of elasticities tell us about differences in local selection pressures acting on distinct populations and contributions of correlations tell us about differences in the phenotypic tradeoffs associated with vital rates. I use this new method to show how these differences drive dynamics in two species: Anthyllis vulneraria (the same populations studied in the first chapter) and Cypripedium calceolus (lady's slipper orchid). In Anthyllis vulneraria, variability in large adult fertility and seedling survival made the largest contributions; there were also effects of differences in elasticities of large adult fertility and survival, as well as differences in the correlations between rapid growth and survival in seedlings (a survival cost of rapid early development), between large adult fertility and survival (a survival cost of reproduction) and between large adult fertility and seedling survival. In Cypripedium calceolus, population growth rates were driven most by differences in the elasticities to the probabilities of adult stasis vs. entering dormancy, as well as by differences in the variability and tradeoffs associated with adult dormancy; correlation played a role through differences in the survival payoff of dormancy vs. the complimentary fertility cost of dormancy in terms of lost opportunity for reproduction. The third and final chapter investigates the role of fire disturbance in driving the life histories and population-level dynamics of five woody plant species growing in the Brazilian cerrado, a savannah-forest mosaic in which woody vegetation cover is primarily mediated by fire disturbance. This study presents a set of diagnostics that use demographic responses to recurring disturbance to categorize species along a continuum of adaptation: on one end we find 'resistant' species that must weather disturbance in order to attain large sizes that are buffered against fire-induced mortality; on the other end we find 'resilient' species that are relatively indifferent to disturbance and harness transient opportunities afforded by early post-fire successional habitats in order to take advantage of increased nutrient availability and reduced competition. Each of these chapters uses stochastic demographic analysis to extend theory describing the dynamics of populations in variable environments; together, these studies present a variegated perspective on the role of environmental stochasticity that provides new methods and novel perspectives that should be useful in the study of population biology and life history evolution.

Book Fast Variables in Stochastic Population Dynamics

Download or read book Fast Variables in Stochastic Population Dynamics written by George William Albert Constable and published by Springer. This book was released on 2015-07-25 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis two variants of the fast variable elimination method are developed. They are intuitive, simple to implement and give results which are in very good agreement with those found from numerical simulations. The relative simplicity of the techniques makes them ideal for applying to problems featuring demographic stochasticity, for experts and non-experts alike. Within the context of mathematical modelling, fast variable elimination is one of the central tools with which one can simplify a multivariate problem. When used in the context of of deterministic systems, the theory is quite standard, but when stochastic effects are present, it becomes less straightforward to apply. While the introductory and background chapters form an excellent primer to the theory of stochastic population dynamics, the techniques developed can be applied to systems exhibiting a separation of timescales in a variety of fields including population genetics, ecology and epidemiology.

Book Finite Size Effects in Stochastic Models of Population Dynamics  Applications to Biomedicine and Biology

Download or read book Finite Size Effects in Stochastic Models of Population Dynamics Applications to Biomedicine and Biology written by Francesca Di Patti and published by Firenze University Press. This book was released on 2010 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Population Dynamics  Algebraic And Probabilistic Approach

Download or read book Population Dynamics Algebraic And Probabilistic Approach written by Utkir A Rozikov and published by World Scientific. This book was released on 2020-04-22 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: A population is a summation of all the organisms of the same group or species, which live in a particular geographical area, and have the capability of interbreeding. The main mathematical problem for a given population is to carefully examine the evolution (time dependent dynamics) of the population. The mathematical methods used in the study of this problem are based on probability theory, stochastic processes, dynamical systems, nonlinear differential and difference equations, and (non-)associative algebras.A state of a population is a distribution of probabilities of the different types of organisms in every generation. Type partition is called differentiation (for example, sex differentiation which defines a bisexual population). This book systematically describes the recently developed theory of (bisexual) population, and mainly contains results obtained since 2010.The book presents algebraic and probabilistic approaches in the theory of population dynamics. It also includes several dynamical systems of biological models such as dynamics generated by Markov processes of cubic stochastic matrices; dynamics of sex-linked population; dynamical systems generated by a gonosomal evolution operator; dynamical system and an evolution algebra of mosquito population; and ocean ecosystems.The main aim of this book is to facilitate the reader's in-depth understanding by giving a systematic review of the theory of population dynamics which has wide applications in biology, mathematics, medicine, and physics.

Book Stability in Model Populations  MPB 31

Download or read book Stability in Model Populations MPB 31 written by Laurence D. Mueller and published by Princeton University Press. This book was released on 2020-03-31 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Throughout the twentieth century, biologists investigated the mechanisms that stabilize biological populations, populations which--if unchecked by such agencies as competition and predation--should grow geometrically. How is order in nature maintained in the face of the seemingly disorderly struggle for existence? In this book, Laurence Mueller and Amitabh Joshi examine current theories of population stability and show how recent laboratory research on model populations--particularly blowflies, Tribolium, and Drosophila--contributes to our understanding of population dynamics and the evolution of stability. The authors review the general theory of population stability and critically analyze techniques for inferring whether a given population is in balance or not. They then show how rigorous empirical research can reveal both the proximal causes of stability (how populations are regulated and maintained at an equilibrium, including the relative roles of biotic and abiotic factors) and its ultimate, mostly evolutionary causes. In the process, they describe experimental studies on model systems that address the effects of age-structure, inbreeding, resource levels, and population structure on the stability and persistence of populations. The discussion incorporates the authors' own findings on the evolution of population stability in Drosophila. They go on to relate laboratory work to studies of animals in the wild and to develop a general framework for relating the life history and ecology of a species to its population dynamics. This accessible, finely written illustration of how carefully designed experiments can improve theory will have tremendous value for all ecologists and evolutionary biologists.

Book Stage structured Demography in Stochastic Environments

Download or read book Stage structured Demography in Stochastic Environments written by Raziel Joseph Davison and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Populations living in natural environments experience fluctuations in environmental conditions that drive variability in demographic rates. This dissertation develops new and existing mathematical methods for studying environmental stochasticity and uses these tools to investigate the role of environmental stochasticity in driving observed population dynamics and plant life history evolution. In the first two chapters I develop new approaches to a classic method in population biology, the life table response experiment (LTRE). Whereas existing methods used time-averaged demographic rates and deterministic sensitivities to decompose observed differences in population growth rates, this new method allows estimation of the contributions to those differences made by variances in demographic rates as well as by mean rate values. I use this stochastic LTRE to show how differential variability in the vital rates of Anthyllis vulneraria (kidney vetch) contribute to differences in the population growth rates of nine populations growing in southwest Belgium; we also show how the effects of demographic rate variability depend on soil depth, where the greater moisture retention of deeper soils buffers populations against the otherwise negative effects of demographic variability. The second chapter provides a different approach to LTRE that uses an iterated two-factor decomposition of the small noise approximation of the stochastic population growth rate to quantify contributions to that growth rate made by: (i) mean vital rates, (ii) temporal variability in vital rates, (iii) elasticities of the population growth rate to individual vital rates, and (iv) correlations between vital rates across the study period. Contributions of elasticities tell us about differences in local selection pressures acting on distinct populations and contributions of correlations tell us about differences in the phenotypic tradeoffs associated with vital rates. I use this new method to show how these differences drive dynamics in two species: Anthyllis vulneraria (the same populations studied in the first chapter) and Cypripedium calceolus (lady's slipper orchid). In Anthyllis vulneraria, variability in large adult fertility and seedling survival made the largest contributions; there were also effects of differences in elasticities of large adult fertility and survival, as well as differences in the correlations between rapid growth and survival in seedlings (a survival cost of rapid early development), between large adult fertility and survival (a survival cost of reproduction) and between large adult fertility and seedling survival. In Cypripedium calceolus, population growth rates were driven most by differences in the elasticities to the probabilities of adult stasis vs. entering dormancy, as well as by differences in the variability and tradeoffs associated with adult dormancy; correlation played a role through differences in the survival payoff of dormancy vs. the complimentary fertility cost of dormancy in terms of lost opportunity for reproduction. The third and final chapter investigates the role of fire disturbance in driving the life histories and population-level dynamics of five woody plant species growing in the Brazilian cerrado, a savannah-forest mosaic in which woody vegetation cover is primarily mediated by fire disturbance. This study presents a set of diagnostics that use demographic responses to recurring disturbance to categorize species along a continuum of adaptation: on one end we find 'resistant' species that must weather disturbance in order to attain large sizes that are buffered against fire-induced mortality; on the other end we find 'resilient' species that are relatively indifferent to disturbance and harness transient opportunities afforded by early post-fire successional habitats in order to take advantage of increased nutrient availability and reduced competition. Each of these chapters uses stochastic demographic analysis to extend theory describing the dynamics of populations in variable environments; together, these studies present a variegated perspective on the role of environmental stochasticity that provides new methods and novel perspectives that should be useful in the study of population biology and life history evolution.

Book The Effects of Spatial Correlations and Demographic Stochasticity on Population Dynamics

Download or read book The Effects of Spatial Correlations and Demographic Stochasticity on Population Dynamics written by Robin E. Snyder and published by . This book was released on 2001 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Principles of Population Dynamics and Their Application

Download or read book Principles of Population Dynamics and Their Application written by Alan A. Berryman and published by Garland Science. This book was released on 2020-11-25 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to population dynamics, exploring rules that govern change in any dynamic system and applying these general principles to populations of living organisms. Principles of Population Dynamics and their Application is aimed at applied ecologists, resource managers. and pest managers. It is also aimed at undergraduate students taking courses in forestry, fisheries, widlife and pest management.

Book Population Ecology in Practice

Download or read book Population Ecology in Practice written by Dennis L. Murray and published by John Wiley & Sons. This book was released on 2020-02-10 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: A synthesis of contemporary analytical and modeling approaches in population ecology The book provides an overview of the key analytical approaches that are currently used in demographic, genetic, and spatial analyses in population ecology. The chapters present current problems, introduce advances in analytical methods and models, and demonstrate the applications of quantitative methods to ecological data. The book covers new tools for designing robust field studies; estimation of abundance and demographic rates; matrix population models and analyses of population dynamics; and current approaches for genetic and spatial analysis. Each chapter is illustrated by empirical examples based on real datasets, with a companion website that offers online exercises and examples of computer code in the R statistical software platform. Fills a niche for a book that emphasizes applied aspects of population analysis Covers many of the current methods being used to analyse population dynamics and structure Illustrates the application of specific analytical methods through worked examples based on real datasets Offers readers the opportunity to work through examples or adapt the routines to their own datasets using computer code in the R statistical platform Population Ecology in Practice is an excellent book for upper-level undergraduate and graduate students taking courses in population ecology or ecological statistics, as well as established researchers needing a desktop reference for contemporary methods used to develop robust population assessments.

Book Conservation Biology

    Book Details:
  • Author : Peggy L. Fiedler
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1468464264
  • Pages : 523 pages

Download or read book Conservation Biology written by Peggy L. Fiedler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: • • • John Harper • • • Nature conservation has changed from an idealistic philosophy to a serious technology. Ecology, the science that underpins the technol ogy of conservation, is still too immature to provide all the wisdom that it must. It is arguable that the desire to conserve nature will in itself force the discipline of ecology to identify fundamental prob lems in its scientific goals and methods. In return, ecologists may be able to offer some insights that make conservation more practicable (Harper 1987). The idea that nature (species or communities) is worth preserv ing rests on several fundamental arguments, particularly the argu ment of nostalgia and the argument of human benefit and need. Nostalgia, of course, is a powerful emotion. With some notable ex ceptions, there is usually a feeling of dismay at a change in the sta tus quo, whether it be the loss of a place in the country for walking or rambling, the loss of a painting or architectural monument, or that one will never again have the chance to see a particular species of bird or plant.

Book Complex Population Dynamics

    Book Details:
  • Author : Peter Turchin
  • Publisher : Princeton University Press
  • Release : 2013-02-15
  • ISBN : 1400847281
  • Pages : 471 pages

Download or read book Complex Population Dynamics written by Peter Turchin and published by Princeton University Press. This book was released on 2013-02-15 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Why do organisms become extremely abundant one year and then seem to disappear a few years later? Why do population outbreaks in particular species happen more or less regularly in certain locations, but only irregularly (or never at all) in other locations? Complex population dynamics have fascinated biologists for decades. By bringing together mathematical models, statistical analyses, and field experiments, this book offers a comprehensive new synthesis of the theory of population oscillations. Peter Turchin first reviews the conceptual tools that ecologists use to investigate population oscillations, introducing population modeling and the statistical analysis of time series data. He then provides an in-depth discussion of several case studies--including the larch budmoth, southern pine beetle, red grouse, voles and lemmings, snowshoe hare, and ungulates--to develop a new analysis of the mechanisms that drive population oscillations in nature. Through such work, the author argues, ecologists can develop general laws of population dynamics that will help turn ecology into a truly quantitative and predictive science. Complex Population Dynamics integrates theoretical and empirical studies into a major new synthesis of current knowledge about population dynamics. It is also a pioneering work that sets the course for ecology's future as a predictive science.

Book Population Dynamics

    Book Details:
  • Author : C. Y. Cyrus Chu
  • Publisher : Oxford University Press
  • Release : 1998-09-03
  • ISBN : 0195352882
  • Pages : 241 pages

Download or read book Population Dynamics written by C. Y. Cyrus Chu and published by Oxford University Press. This book was released on 1998-09-03 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Population Dynamics fills the gap between the classical supply-side population theory of Malthus and the modern demand-side theory of economic demography. In doing so, author Cyrus Chu investigates specifically the dynamic macro implications of various static micro family economic decisions. Holding the characteristic composition of the macro population to always be an aggregate result of some corresponding individual micro decision, Chu extends his research on the fertility-related decisions of families to an analysis of other economic determinations. Within this framework, Chu studies the income distribution, attitude composition, job structure, and aggregate savings and pensions of the population. While in some cases a micro-macro connection is easily established under regular behavioral assumptions, in several chapters Chu enlists the mathematical tool of branching processes to determine the connection. Offering a wealth of detail, this book provides a balanced discussion of background motivation, theoretical characterization, and empirical evidence in an effort to bring about a renewal in the economic approach to population dynamics. This welcome addition to the research and theory of economic demography will interest professional economists as well as professors and graduate students of economics.

Book Stochastic Population Processes

Download or read book Stochastic Population Processes written by Eric Renshaw and published by Oxford University Press. This book was released on 2015 with total page 665 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reference text presenting stochastic processes and a range of approximation and simulation techniques for extracting behavioural information in the context of stochastic population dynamics.