Download or read book Polynomial Identities in Ring Theory written by and published by Academic Press. This book was released on 1980-07-24 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polynomial Identities in Ring Theory
Download or read book Polynomial Identity Rings written by Vesselin Drensky and published by Birkhäuser. This book was released on 2012-12-06 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: These lecture notes treat polynomial identity rings from both the combinatorial and structural points of view. The greater part of recent research in polynomial identity rings is about combinatorial questions, and the combinatorial part of the lecture notes gives an up-to-date account of recent research. On the other hand, the main structural results have been known for some time, and the emphasis there is on a presentation accessible to newcomers to the subject.
Download or read book Polynomial Identities in Algebras written by Onofrio Mario Di Vincenzo and published by Springer Nature. This book was released on 2021-03-22 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the talks given at the INDAM workshop entitled "Polynomial identites in algebras", held in Rome in September 2019. The purpose of the book is to present the current state of the art in the theory of PI-algebras. The review of the classical results in the last few years has pointed out new perspectives for the development of the theory. In particular, the contributions emphasize on the computational and combinatorial aspects of the theory, its connection with invariant theory, representation theory, growth problems. It is addressed to researchers in the field.
Download or read book RINGS WITH POLYNOMIAL IDENTITIES AND FINITE DIMENSIONAL REPRESENTATIONS OF Algebras written by Eli Aljadeff and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Rings with Generalized Identities written by Konstant I. Beidar and published by CRC Press. This book was released on 1995-11-17 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Discusses the latest results concerning the area of noncommutative ring theory known as the theory of generalized identities (GIs)--detailing Kharchenko's results on GIs in prime rings, Chuang's extension to antiautomorphisms, and the use of the Beidar-Mikhalev theory of orthogonal completion in the semiprime case. Provides novel proofs of existing results."
Download or read book Polynomial Identities and Asymptotic Methods written by A. Giambruno and published by American Mathematical Soc.. This book was released on 2005 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a state of the art approach to the study of polynomial identities satisfied by a given algebra by combining methods of ring theory, combinatorics, and representation theory of groups with analysis. The idea of applying analytical methods to the theory of polynomial identities appeared in the early 1970s and this approach has become one of the most powerful tools of the theory. A PI-algebra is any algebra satisfying at least one nontrivial polynomial identity. This includes the polynomial rings in one or several variables, the Grassmann algebra, finite-dimensional algebras, and many other algebras occurring naturally in mathematics. The core of the book is the proof that the sequence of co-dimensions of any PI-algebra has integral exponential growth - the PI-exponent of the algebra. Later chapters further apply these results to subjects such as a characterization of varieties of algebras having polynomial growth and a classification of varieties that are minimal for a given exponent.
Download or read book Polynomial Identities And Combinatorial Methods written by Antonio Giambruno and published by CRC Press. This book was released on 2003-05-20 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polynomial Identities and Combinatorial Methods presents a wide range of perspectives on topics ranging from ring theory and combinatorics to invariant theory and associative algebras. It covers recent breakthroughs and strategies impacting research on polynomial identities and identifies new concepts in algebraic combinatorics, invariant and representation theory, and Lie algebras and superalgebras for novel studies in the field. It presents intensive discussions on various methods and techniques relating the theory of polynomial identities to other branches of algebraic study and includes discussions on Hopf algebras and quantum polynomials, free algebras and Scheier varieties.
Download or read book Rings with Polynomial Identities written by Claudio Procesi and published by . This book was released on 1973 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Rings of Quotients written by B. Stenström and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of rings of quotients has its origin in the work of (j). Ore and K. Asano on the construction of the total ring of fractions, in the 1930's and 40's. But the subject did not really develop until the end of the 1950's, when a number of important papers appeared (by R. E. Johnson, Y. Utumi, A. W. Goldie, P. Gabriel, J. Lambek, and others). Since then the progress has been rapid, and the subject has by now attained a stage of maturity, where it is possible to make a systematic account of it (which is the purpose of this book). The most immediate example of a ring of quotients is the field of fractions Q of a commutative integral domain A. It may be characterized by the two properties: (i) For every qEQ there exists a non-zero SEA such that qSEA. (ii) Q is the maximal over-ring of A satisfying condition (i). The well-known construction of Q can be immediately extended to the case when A is an arbitrary commutative ring and S is a multiplicatively closed set of non-zero-divisors of A. In that case one defines the ring of fractions Q = A [S-l] as consisting of pairs (a, s) with aEA and SES, with the declaration that (a, s)=(b, t) if there exists UES such that uta = usb. The resulting ring Q satisfies (i), with the extra requirement that SES, and (ii).
Download or read book Introduction to Noncommutative Algebra written by Matej Brešar and published by Springer. This book was released on 2014-10-14 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.
Download or read book The Polynomial Identities and Invariants of n times n Matrices written by Edward Formanek and published by American Mathematical Soc.. This book was released on 1991 with total page 65 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of polynomial identities, as a well-defined field of study, began with a well-known 1948 article of Kaplansky. The field has since developed along two branches: the structural, which investigates the properties of rings which satisfy a polynomial identity; and the varietal, which investigates the set of polynomials in the free ring which vanish under all specializations in a given ring. This book is based on lectures delivered during an NSF-CBMS Regional Conference, held at DePaul University in July 1990, at which the author was the principal lecturer. The first part of the book is concerned with polynomial identity rings. The emphasis is on those parts of the theory related to n x n matrices, including the major structure theorems and the construction of certain polynomials identities and central polynomials for n x n matrices. The ring of generic matrices and its centre is described. The author then moves on to the invariants of n x n matrices, beginning with the first and second fundamental theorems, which are used to describe the polynomial identities satisfied by n x n matrices. One of the exceptional features of this book is the way it emphasizes the connection between polynomial identities and invariants of n x n matrices. Accessible to those with background at the level of a first-year graduate course in algebra, this book gives readers an understanding of polynomial identity rings and invariant theory, as well as an indication of current problems and research in these areas.
Download or read book Graded Ring Theory written by C. Nastasescu and published by Elsevier. This book was released on 2011-08-18 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is aimed to be a ‘technical’ book on graded rings. By ‘technical’ we mean that the book should supply a kit of tools of quite general applicability, enabling the reader to build up his own further study of non-commutative rings graded by an arbitrary group. The body of the book, Chapter A, contains: categorical properties of graded modules, localization of graded rings and modules, Jacobson radicals of graded rings, the structure thedry for simple objects in the graded sense, chain conditions, Krull dimension of graded modules, homogenization, homological dimension, primary decomposition, and more. One of the advantages of the generality of Chapter A is that it allows direct applications of these results to the theory of group rings, twisted and skew group rings and crossed products. With this in mind we have taken care to point out on several occasions how certain techniques may be specified to the case of strongly graded rings. We tried to write Chapter A in such a way that it becomes suitable for an advanced course in ring theory or general algebra, we strove to make it as selfcontained as possible and we included several problems and exercises. Other chapters may be viewed as an attempt to show how the general techniques of Chapter A can be applied in some particular cases, e.g. the case where the gradation is of type Z. In compiling the material for Chapters B and C we have been guided by our own research interests. Chapter 6 deals with commutative graded rings of type 2 and we focus on two main topics: artihmeticallygraded domains, and secondly, local conditions for Noetherian rings. In Chapter C we derive some structural results relating to the graded properties of the rings considered. The following classes of graded rings receive special attention: fully bounded Noetherian rings, birational extensions of commutative rings, rings satisfying polynomial identities, and Von Neumann regular rings. Here the basic idea is to derive results of ungraded nature from graded information. Some of these sections lead naturally to the study of sheaves over the projective spectrum Proj(R) of a positively graded ring, but we did not go into these topics here. We refer to [125] for a noncommutative treatment of projective geometry, i.e. the geometry of graded P.I. algebras.
Download or read book Further Algebra and Applications written by Paul M. Cohn and published by Springer Science & Business Media. This book was released on 2011-06-27 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is the second volume of a revised edition of P.M. Cohn's classic three-volume text Algebra, widely regarded as one of the most outstanding introductory algebra textbooks. Volume Two focuses on applications. The text is supported by worked examples, with full proofs, there are numerous exercises with occasional hints, and some historical remarks.
Download or read book Rings with Polynomial Identities and Finite Dimensional Representations of Algebras written by Eli Aljadeff and published by American Mathematical Soc.. This book was released on 2020-12-14 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: A polynomial identity for an algebra (or a ring) A A is a polynomial in noncommutative variables that vanishes under any evaluation in A A. An algebra satisfying a nontrivial polynomial identity is called a PI algebra, and this is the main object of study in this book, which can be used by graduate students and researchers alike. The book is divided into four parts. Part 1 contains foundational material on representation theory and noncommutative algebra. In addition to setting the stage for the rest of the book, this part can be used for an introductory course in noncommutative algebra. An expert reader may use Part 1 as reference and start with the main topics in the remaining parts. Part 2 discusses the combinatorial aspects of the theory, the growth theorem, and Shirshov's bases. Here methods of representation theory of the symmetric group play a major role. Part 3 contains the main body of structure theorems for PI algebras, theorems of Kaplansky and Posner, the theory of central polynomials, M. Artin's theorem on Azumaya algebras, and the geometric part on the variety of semisimple representations, including the foundations of the theory of Cayley–Hamilton algebras. Part 4 is devoted first to the proof of the theorem of Razmyslov, Kemer, and Braun on the nilpotency of the nil radical for finitely generated PI algebras over Noetherian rings, then to the theory of Kemer and the Specht problem. Finally, the authors discuss PI exponent and codimension growth. This part uses some nontrivial analytic tools coming from probability theory. The appendix presents the counterexamples of Golod and Shafarevich to the Burnside problem.
Download or read book Foundations of Module and Ring Theory written by Robert Wisbauer and published by Routledge. This book was released on 2018-05-11 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a comprehensive introduction to module theory and the related part of ring theory, including original results as well as the most recent work. It is a useful and stimulating study for those new to the subject as well as for researchers and serves as a reference volume. Starting form a basic understanding of linear algebra, the theory is presented and accompanied by complete proofs. For a module M, the smallest Grothendieck category containing it is denoted by o[M] and module theory is developed in this category. Developing the techniques in o[M] is no more complicated than in full module categories and the higher generality yields significant advantages: for example, module theory may be developed for rings without units and also for non-associative rings. Numerous exercises are included in this volume to give further insight into the topics covered and to draw attention to related results in the literature.
Download or read book Algebraic Geometry and Commutative Algebra written by Hiroaki Hijikata and published by Academic Press. This book was released on 2014-05-10 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic Geometry and Commutative Algebra in Honor of Masayoshi Nagata presents a collection of papers on algebraic geometry and commutative algebra in honor of Masayoshi Nagata for his significant contributions to commutative algebra. Topics covered range from power series rings and rings of invariants of finite linear groups to the convolution algebra of distributions on totally disconnected locally compact groups. The discussion begins with a description of several formulas for enumerating certain types of objects, which may be tabular arrangements of integers called Young tableaux or some types of monomials. The next chapter explains how to establish these enumerative formulas, with emphasis on the role played by transformations of determinantal polynomials and recurrence relations satisfied by them. The book then turns to several applications of the enumerative formulas and universal identity, including including enumerative proofs of the straightening law of Doubilet-Rota-Stein and computations of Hilbert functions of polynomial ideals of certain determinantal loci. Invariant differentials and quaternion extensions are also examined, along with the moduli of Todorov surfaces and the classification problem of embedded lines in characteristic p. This monograph will be a useful resource for practitioners and researchers in algebra and geometry.
Download or read book Finite Dimensional Algebras written by Yurj A. Drozd and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This English edition has an additional chapter "Elements of Homological Al gebra". Homological methods appear to be effective in many problems in the theory of algebras; we hope their inclusion makes this book more complete and self-contained as a textbook. We have also taken this occasion to correct several inaccuracies and errors in the original Russian edition. We should like to express our gratitude to V. Dlab who has not only metic ulously translated the text, but has also contributed by writing an Appendix devoted to a new important class of algebras, viz. quasi-hereditary algebras. Finally, we are indebted to the publishers, Springer-Verlag, for enabling this book to reach such a wide audience in the world of mathematical community. Kiev, February 1993 Yu.A. Drozd V.V. Kirichenko Preface The theory of finite dimensional algebras is one of the oldest branches of modern algebra. Its origin is linked to the work of Hamilton who discovered the famous algebra of quaternions, and Cayley who developed matrix theory. Later finite dimensional algebras were studied by a large number of mathematicians including B. Peirce, C.S. Peirce, Clifford, ·Weierstrass, Dedekind, Jordan and Frobenius. At the end of the last century T. Molien and E. Cartan described the semisimple algebras over the complex and real fields and paved the first steps towards the study of non-semi simple algebras.