EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Sparse Polynomial Approximation of High Dimensional Functions

Download or read book Sparse Polynomial Approximation of High Dimensional Functions written by Ben Adcock and published by Society for Industrial and Applied Mathematics (SIAM). This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is a book about polynomial approximation in high dimensions"--

Book Approximation Theory and Approximation Practice  Extended Edition

Download or read book Approximation Theory and Approximation Practice Extended Edition written by Lloyd N. Trefethen and published by SIAM. This book was released on 2019-01-01 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the field’s most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.

Book Smooth Functions and Maps

Download or read book Smooth Functions and Maps written by Boris M. Makarov and published by Springer Nature. This book was released on 2021-07-24 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a consistent and sufficiently comprehensive theory of smooth functions and maps insofar as it is connected with differential calculus. The scope of notions includes, among others, Lagrange inequality, Taylor’s formula, finding absolute and relative extrema, theorems on smoothness of the inverse map and on conditions of local invertibility, implicit function theorem, dependence and independence of functions, classification of smooth functions up to diffeomorphism. The concluding chapter deals with a more specific issue of critical values of smooth mappings. In several chapters, a relatively new technical approach is used that allows the authors to clarify and simplify some of the technically difficult proofs while maintaining full integrity. Besides, the book includes complete proofs of some important results which until now have only been published in scholarly literature or scientific journals (remainder estimates of Taylor’s formula in a nonconvex area (Chapter I, §8), Whitney's extension theorem for smooth function (Chapter I, §11) and some of its corollaries, global diffeomorphism theorem (Chapter II, §5), results on sets of critical values of smooth mappings and the related Whitney example (Chapter IV). The text features multiple examples illustrating the results obtained and demonstrating their accuracy. Moreover, the book contains over 150 problems and 19 illustrations. Perusal of the book equips the reader to further explore any literature basing upon multivariable calculus.

Book Polynomial Approximation of Differential Equations

Download or read book Polynomial Approximation of Differential Equations written by Daniele Funaro and published by Springer Science & Business Media. This book was released on 2008-10-04 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.

Book Sparse Polynomial Approximation of High Dimensional Functions

Download or read book Sparse Polynomial Approximation of High Dimensional Functions written by Ben Adcock and published by SIAM. This book was released on 2022-02-16 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over seventy years ago, Richard Bellman coined the term “the curse of dimensionality” to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation—that is, the development of methods for approximating functions of many variables accurately and efficiently from data. This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques. Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book’s companion website (www.sparse-hd-book.com). This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques.

Book Weighted Polynomial Approximation and Numerical Methods for Integral Equations

Download or read book Weighted Polynomial Approximation and Numerical Methods for Integral Equations written by Peter Junghanns and published by Birkhäuser. This book was released on 2022-08-13 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a combination of two topics: one coming from the theory of approximation of functions and integrals by interpolation and quadrature, respectively, and the other from the numerical analysis of operator equations, in particular, of integral and related equations. The text focusses on interpolation and quadrature processes for functions defined on bounded and unbounded intervals and having certain singularities at the endpoints of the interval, as well as on numerical methods for Fredholm integral equations of first and second kind with smooth and weakly singular kernel functions, linear and nonlinear Cauchy singular integral equations, and hypersingular integral equations. The book includes both classic and very recent results and will appeal to graduate students and researchers who want to learn about the approximation of functions and the numerical solution of operator equations, in particular integral equations.

Book Ridge Functions

    Book Details:
  • Author : Allan Pinkus
  • Publisher : Cambridge University Press
  • Release : 2015-08-07
  • ISBN : 1107124395
  • Pages : 218 pages

Download or read book Ridge Functions written by Allan Pinkus and published by Cambridge University Press. This book was released on 2015-08-07 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the state of the art in the theory of ridge functions, providing a solid theoretical foundation.

Book Smooth Analysis in Banach Spaces

Download or read book Smooth Analysis in Banach Spaces written by Petr Hájek and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-10-29 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about the subject of higher smoothness in separable real Banach spaces. It brings together several angles of view on polynomials, both in finite and infinite setting. Also a rather thorough and systematic view of the more recent results, and the authors work is given. The book revolves around two main broad questions: What is the best smoothness of a given Banach space, and its structural consequences? How large is a supply of smooth functions in the sense of approximating continuous functions in the uniform topology, i.e. how does the Stone-Weierstrass theorem generalize into infinite dimension where measure and compactness are not available? The subject of infinite dimensional real higher smoothness is treated here for the first time in full detail, therefore this book may also serve as a reference book.

Book Quantitative Approximation

Download or read book Quantitative Approximation written by Ronald A. Devore and published by Academic Press. This book was released on 2014-05-10 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative Approximation provides information pertinent to nonlinear approximation, including rational approximation and optimal knot spline approximation. This book discusses spline approximation with the most emphasis on multivariate and knot independent questions. Organized into 26 chapters, this book begins with an overview of the inequality for the sharp function in terms of the maximal rearrangement. This text then examines the best co-approximation in a Hilbert space wherein the existence ad uniqueness sets are the closed flats. Other chapters consider the inverse of the coefficient matrix for the system satisfied by the B-spline coefficients of the cubic spline interpolant at knots. This book discusses as well the relationship between the structural properties of a function and its degree of approximation by rational functions. The final chapter deals with the problem of existence of continuous selections for metric projections and provides a solution for this problem. This book is a valuable resource for mathematicians.

Book Algebraic Approximation  A Guide to Past and Current Solutions

Download or read book Algebraic Approximation A Guide to Past and Current Solutions written by Jorge Bustamante and published by Springer Science & Business Media. This book was released on 2011-11-15 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains an exposition of several results related with direct and converse theorems in the theory of approximation by algebraic polynomials in a finite interval. In addition, some facts concerning trigonometric approximation that are necessary for motivation and comparisons are included. The selection of papers that are referenced and discussed document some trends in polynomial approximation from the 1950s to the present day.

Book Tractability of Multivariate Problems  Linear information

Download or read book Tractability of Multivariate Problems Linear information written by Erich Novak and published by European Mathematical Society. This book was released on 2008 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariate problems occur in many applications. These problems are defined on spaces of $d$-variate functions and $d$ can be huge--in the hundreds or even in the thousands. Some high-dimensional problems can be solved efficiently to within $\varepsilon$, i.e., the cost increases polynomially in $\varepsilon^{-1}$ and $d$. However, there are many multivariate problems for which even the minimal cost increases exponentially in $d$. This exponential dependence on $d$ is called intractability or the curse of dimensionality. This is the first volume of a three-volume set comprising a comprehensive study of the tractability of multivariate problems. It is devoted to tractability in the case of algorithms using linear information and develops the theory for multivariate problems in various settings: worst case, average case, randomized and probabilistic. A problem is tractable if its minimal cost is not exponential in $\varepsilon^{-1}$ and $d$. There are various notions of tractability, depending on how we measure the lack of exponential dependence. For example, a problem is polynomially tractable if its minimal cost is polynomial in $\varepsilon^{-1}$ and $d$. The study of tractability was initiated about 15 years ago. This is the first and only research monograph on this subject. Many multivariate problems suffer from the curse of dimensionality when they are defined over classical (unweighted) spaces. In this case, all variables and groups of variables play the same role, which causes the minimal cost to be exponential in $d$. But many practically important problems are solved today for huge $d$ in a reasonable time. One of the most intriguing challenges of the theory is to understand why this is possible. Multivariate problems may become weakly tractable, polynomially tractable or even strongly polynomially tractable if they are defined over weighted spaces with properly decaying weights. One of the main purposes of this book is to study weighted spaces and obtain necessary and sufficient conditions on weights for various notions of tractability. The book is of interest for researchers working in computational mathematics, especially in approximation of high-dimensional problems. It may be also suitable for graduate courses and seminars. The text concludes with a list of thirty open problems that can be good candidates for future tractability research.

Book Approximation of Functions by Polynomials and Splines

Download or read book Approximation of Functions by Polynomials and Splines written by S. B. Stechkin and published by American Mathematical Soc.. This book was released on 1981 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers and articles about polynomials and splines pproximation.

Book The Theory of Splines and Their Applications

Download or read book The Theory of Splines and Their Applications written by J. H. Ahlberg and published by Elsevier. This book was released on 2016-06-03 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Theory of Splines and Their Applications discusses spline theory, the theory of cubic splines, polynomial splines of higher degree, generalized splines, doubly cubic splines, and two-dimensional generalized splines. The book explains the equations of the spline, procedures for applications of the spline, convergence properties, equal-interval splines, and special formulas for numerical differentiation or integration. The text explores the intrinsic properties of cubic splines including the Hilbert space interpretation, transformations defined by a mesh, and some connections with space technology concerning the payload of a rocket. The book also discusses the theory of polynomial splines of odd degree which can be approached through algebraically (which depends primarily on the examination in detail of the linear system of equations defining the spline). The theory can also be approached intrinsically (which exploits the consequences of basic integral relations existing between functions and approximating spline functions). The text also considers the second integral relation, raising the order of convergence, and the limits on the order of convergence. The book will prove useful for mathematicians, physicist, engineers, or academicians in the field of technology and applied mathematics.

Book An Applied Mathematician   s Apology

Download or read book An Applied Mathematician s Apology written by Lloyd N. Trefethen and published by SIAM. This book was released on 2022-06-06 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 1940 G. H. Hardy published A Mathematician's Apology, a meditation on mathematics by a leading pure mathematician. Eighty-two years later, An Applied Mathematician's Apology is a meditation and also a personal memoir by a philosophically inclined numerical analyst, one who has found great joy in his work but is puzzled by its relationship to the rest of mathematics.

Book Introduction To The Theory Of Weighted Polynomial Approximation

Download or read book Introduction To The Theory Of Weighted Polynomial Approximation written by H N Mhaskar and published by World Scientific. This book was released on 1997-01-04 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, we have attempted to explain a variety of different techniques and ideas which have contributed to this subject in its course of successive refinements during the last 25 years. There are other books and surveys reviewing the ideas from the perspective of either potential theory or orthogonal polynomials. The main thrust of this book is to introduce the subject from an approximation theory point of view. Thus, the main motivation is to study analogues of results from classical trigonometric approximation theory, introducing other ideas as needed. It is not our objective to survey the most recent results, but merely to introduce to the readers the thought processes and ideas as they are developed.This book is intended to be self-contained, although the reader is expected to be familiar with rudimentary real and complex analysis. It will also help to have studied elementary trigonometric approximation theory, and have some exposure to orthogonal polynomials.

Book Approximation Theory

    Book Details:
  • Author : George A. Anastassiou
  • Publisher : Springer Science & Business Media
  • Release : 1999-12-22
  • ISBN : 9780817641511
  • Pages : 554 pages

Download or read book Approximation Theory written by George A. Anastassiou and published by Springer Science & Business Media. This book was released on 1999-12-22 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: We study in Part I of this monograph the computational aspect of almost all moduli of continuity over wide classes of functions exploiting some of their convexity properties. To our knowledge it is the first time the entire calculus of moduli of smoothness has been included in a book. We then present numerous applications of Approximation Theory, giving exact val ues of errors in explicit forms. The K-functional method is systematically avoided since it produces nonexplicit constants. All other related books so far have allocated very little space to the computational aspect of moduli of smoothness. In Part II, we study/examine the Global Smoothness Preservation Prop erty (GSPP) for almost all known linear approximation operators of ap proximation theory including: trigonometric operators and algebraic in terpolation operators of Lagrange, Hermite-Fejer and Shepard type, also operators of stochastic type, convolution type, wavelet type integral opera tors and singular integral operators, etc. We present also a sufficient general theory for GSPP to hold true. We provide a great variety of applications of GSPP to Approximation Theory and many other fields of mathemat ics such as Functional analysis, and outside of mathematics, fields such as computer-aided geometric design (CAGD). Most of the time GSPP meth ods are optimal. Various moduli of smoothness are intensively involved in Part II. Therefore, methods from Part I can be used to calculate exactly the error of global smoothness preservation. It is the first time in the literature that a book has studied GSPP.

Book Spectral Methods for Time Dependent Problems

Download or read book Spectral Methods for Time Dependent Problems written by Jan S. Hesthaven and published by Cambridge University Press. This book was released on 2007-01-11 with total page 4 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral methods are well-suited to solve problems modeled by time-dependent partial differential equations: they are fast, efficient and accurate and widely used by mathematicians and practitioners. This class-tested 2007 introduction, the first on the subject, is ideal for graduate courses, or self-study. The authors describe the basic theory of spectral methods, allowing the reader to understand the techniques through numerous examples as well as more rigorous developments. They provide a detailed treatment of methods based on Fourier expansions and orthogonal polynomials (including discussions of stability, boundary conditions, filtering, and the extension from the linear to the nonlinear situation). Computational solution techniques for integration in time are dealt with by Runge-Kutta type methods. Several chapters are devoted to material not previously covered in book form, including stability theory for polynomial methods, techniques for problems with discontinuous solutions, round-off errors and the formulation of spectral methods on general grids. These will be especially helpful for practitioners.