Download or read book Rational Points on Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
Download or read book Points of Finite Order on Elliptic Curves with Complex Multiplication written by Loren D. Olson and published by . This book was released on 1974 with total page 48 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Rational Points on Modular Elliptic Curves written by Henri Darmon and published by American Mathematical Soc.. This book was released on 2004 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.
Download or read book Elliptic Curves written by Lawrence C. Washington and published by CRC Press. This book was released on 2008-04-03 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like its bestselling predecessor, Elliptic Curves: Number Theory and Cryptography, Second Edition develops the theory of elliptic curves to provide a basis for both number theoretic and cryptographic applications. With additional exercises, this edition offers more comprehensive coverage of the fundamental theory, techniques, and application
Download or read book Algorithms for Modular Elliptic Curves Full Canadian Binding written by J. E. Cremona and published by CUP Archive. This book was released on 1997-05-15 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an extensive set of tables giving information about elliptic curves.
Download or read book Elliptic Curves Second Edition written by James S Milne and published by World Scientific. This book was released on 2020-08-20 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.The first three chapters develop the basic theory of elliptic curves.For this edition, the text has been completely revised and updated.
Download or read book The Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
Download or read book Arithmetic Theory of Elliptic Curves written by J. Coates and published by Springer Science & Business Media. This book was released on 1999-10-19 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the expanded versions of the lectures given by the authors at the C.I.M.E. instructional conference held in Cetraro, Italy, from July 12 to 19, 1997. The papers collected here are broad surveys of the current research in the arithmetic of elliptic curves, and also contain several new results which cannot be found elsewhere in the literature. Owing to clarity and elegance of exposition, and to the background material explicitly included in the text or quoted in the references, the volume is well suited to research students as well as to senior mathematicians.
Download or read book Advances in Cryptology CRYPTO 2001 written by Joe Kilian and published by Springer. This book was released on 2003-05-15 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crypto 2001, the 21st Annual Crypto conference, was sponsored by the Int- national Association for Cryptologic Research (IACR) in cooperation with the IEEE Computer Society Technical Committee on Security and Privacy and the Computer Science Department of the University of California at Santa Barbara. The conference received 156 submissions, of which the program committee selected 34 for presentation; one was later withdrawn. These proceedings contain the revised versions of the 33 submissions that were presented at the conference. These revisions have not been checked for correctness, and the authors bear full responsibility for the contents of their papers. The conference program included two invited lectures. Mark Sherwin spoke on, \Quantum information processing in semiconductors: an experimentalist’s view." Daniel Weitzner spoke on, \Privacy, Authentication & Identity: A recent history of cryptographic struggles for freedom." The conference program also included its perennial \rump session," chaired by Stuart Haber, featuring short, informal talks on late{breaking research news. As I try to account for the hours of my life that ?ew o to oblivion, I realize that most of my time was spent cajoling talented innocents into spending even more time on my behalf. I have accumulated more debts than I can ever hope to repay. As mere statements of thanks are certainly insu cient, consider the rest of this preface my version of Chapter 11.
Download or read book LMSST 24 Lectures on Elliptic Curves written by John William Scott Cassels and published by Cambridge University Press. This book was released on 1991-11-21 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introductory text for beginning graduate students that is contemporary in approach without ignoring historical matters.
Download or read book Abelian l Adic Representations and Elliptic Curves written by Jean-Pierre Serre and published by CRC Press. This book was released on 1997-11-15 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one
Download or read book Mathematics of Public Key Cryptography written by Steven D. Galbraith and published by Cambridge University Press. This book was released on 2012-03-15 with total page 631 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced graduate textbook gives an authoritative and insightful description of the major ideas and techniques of public key cryptography.
Download or read book The 1 2 3 of Modular Forms written by Jan Hendrik Bruinier and published by Springer Science & Business Media. This book was released on 2008-02-10 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.
Download or read book p Adic Methods in Number Theory and Algebraic Geometry written by Alan Adolphson and published by American Mathematical Soc.. This book was released on 1992 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two meetings of the AMS in the autumn of 1989 - one at the Stevens Institute of Technology and the other at Ball State University - included Special Sessions on the role of p-adic methods in number theory and algebraic geometry. This volume grew out of these Special Sessions. Drawn from a wide area of mathematics, the articles presented here provide an excellent sampling of the broad range of trends and applications in p-adic methods.
Download or read book Advances in Cryptology CRYPTO 91 written by Joan Feigenbaum and published by Springer. This book was released on 2003-06-30 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Crypto '91 was the eleventh in a series of workshops on cryptology sponsoredby the International Association for Cryptologic Research and was held in Santa Barbara, California, in August 1991. This volume contains a full paper or an extended abstract for each of the 39 talks presented at the workshop. All theoretical and practical aspects of cryptology are represented, including: protocol design and analysis, combinatorics and authentication, secret sharing and information theory, cryptanalysis, complexity theory, cryptographic schemas based on number theory, pseudorandomness, applications and implementations, viruses, public-key cryptosystems, and digital signatures.
Download or read book Introduction to the Arithmetic Theory of Automorphic Functions written by Gorō Shimura and published by Princeton University Press. This book was released on 1971-08-21 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.
Download or read book Introduction to Elliptic Curves and Modular Forms written by Neal I. Koblitz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves and modular forms provides a fruitful meeting ground for such diverse areas as number theory, complex analysis, algebraic geometry, and representation theory. This book starts out with a problem from elementary number theory and proceeds to lead its reader into the modern theory, covering such topics as the Hasse-Weil L-function and the conjecture of Birch and Swinnerton-Dyer. This new edition details the current state of knowledge of elliptic curves.