Download or read book Poincare s Prize written by George G. Szpiro and published by Penguin. This book was released on 2008-07-29 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amazing story of one of the greatest math problems of all time and the reclusive genius who solved it In the tradition of Fermat’s Enigma and Prime Obsession, George Szpiro brings to life the giants of mathematics who struggled to prove a theorem for a century and the mysterious man from St. Petersburg, Grigory Perelman, who fi nally accomplished the impossible. In 1904 Henri Poincaré developed the Poincaré Conjecture, an attempt to understand higher-dimensional space and possibly the shape of the universe. The problem was he couldn’t prove it. A century later it was named a Millennium Prize problem, one of the seven hardest problems we can imagine. Now this holy grail of mathematics has been found. Accessibly interweaving history and math, Szpiro captures the passion, frustration, and excitement of the hunt, and provides a fascinating portrait of a contemporary noble-genius.
Download or read book The Poincare Conjecture written by Donal O'Shea and published by Bloomsbury Publishing USA. This book was released on 2009-05-26 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Henri Poincaré was one of the greatest mathematicians of the late nineteenth and early twentieth century. He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincaré conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point. Poincaré's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award. In telling the vibrant story of The Poincaré Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.
Download or read book Poincare s Prize written by George G. Szpiro and published by Penguin. This book was released on 2008-07-29 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amazing story of one of the greatest math problems of all time and the reclusive genius who solved it In the tradition of Fermat’s Enigma and Prime Obsession, George Szpiro brings to life the giants of mathematics who struggled to prove a theorem for a century and the mysterious man from St. Petersburg, Grigory Perelman, who fi nally accomplished the impossible. In 1904 Henri Poincaré developed the Poincaré Conjecture, an attempt to understand higher-dimensional space and possibly the shape of the universe. The problem was he couldn’t prove it. A century later it was named a Millennium Prize problem, one of the seven hardest problems we can imagine. Now this holy grail of mathematics has been found. Accessibly interweaving history and math, Szpiro captures the passion, frustration, and excitement of the hunt, and provides a fascinating portrait of a contemporary noble-genius.
Download or read book Einstein s Clocks and Poincare s Maps Empires of Time written by Peter Galison and published by W. W. Norton & Company. This book was released on 2004-09-14 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In Galison's telling of science, the meters and wires and epoxy and solder come alive as characters, along with physicists, engineers, technicians and others . . . Galison has unearthed fascinating material." ("New York Times").
Download or read book Poincare and the Three Body Problem written by June Barrow-Green and published by American Mathematical Soc.. This book was released on 1997 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Poincare's famous memoir on the three body problem arose from his entry in the competition celebrating the 60th birthday of King Oscar of Sweden and Norway. His essay won the prize and was set up in print as a paper in Acta Mathematica when it was found to contain a deep and critical error. In correcting this error Poincare discovered mathematical chaos, as is now clear from June Barrow-Green's pioneering study of a copy of the original memoir annotated by Poincare himself, recently discovered in the Institut Mittag-Leffler in Stockholm. Poincare and the Three Body Problem opens with a discussion of the development of the three body problem itself and Poincare's related earlier work. The book also contains intriguing insights into the contemporary European mathematical community revealed by the workings of the competition. After an account of the discovery of the error and a detailed comparative study of both the original memoir and its rewritten version, the book concludes with an account of the final memoir's reception, influence and impact, and an examination of Poincare's subsequent highly influential work in celestial mechanics.
Download or read book The Millennium Prize Problems written by James Carlson and published by American Mathematical Society, Clay Mathematics Institute. This book was released on 2023-09-14 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: On August 8, 1900, at the second International Congress of Mathematicians in Paris, David Hilbert delivered his famous lecture in which he described twenty-three problems that were to play an influential role in mathematical research. A century later, on May 24, 2000, at a meeting at the Collège de France, the Clay Mathematics Institute (CMI) announced the creation of a US$7 million prize fund for the solution of seven important classic problems which have resisted solution. The prize fund is divided equally among the seven problems. There is no time limit for their solution. The Millennium Prize Problems were selected by the founding Scientific Advisory Board of CMI—Alain Connes, Arthur Jaffe, Andrew Wiles, and Edward Witten—after consulting with other leading mathematicians. Their aim was somewhat different than that of Hilbert: not to define new challenges, but to record some of the most difficult issues with which mathematicians were struggling at the turn of the second millennium; to recognize achievement in mathematics of historical dimension; to elevate in the consciousness of the general public the fact that in mathematics, the frontier is still open and abounds in important unsolved problems; and to emphasize the importance of working towards a solution of the deepest, most difficult problems. The present volume sets forth the official description of each of the seven problems and the rules governing the prizes. It also contains an essay by Jeremy Gray on the history of prize problems in mathematics.
Download or read book Henri Poincar written by Jeremy Gray and published by Princeton University Press. This book was released on 2013 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive look at the mathematics, physics, and philosophy of Henri Poincaré Henri Poincaré (1854–1912) was not just one of the most inventive, versatile, and productive mathematicians of all time—he was also a leading physicist who almost won a Nobel Prize for physics and a prominent philosopher of science whose fresh and surprising essays are still in print a century later. The first in-depth and comprehensive look at his many accomplishments, Henri Poincaré explores all the fields that Poincaré touched, the debates sparked by his original investigations, and how his discoveries still contribute to society today. Math historian Jeremy Gray shows that Poincaré's influence was wide-ranging and permanent. His novel interpretation of non-Euclidean geometry challenged contemporary ideas about space, stirred heated discussion, and led to flourishing research. His work in topology began the modern study of the subject, recently highlighted by the successful resolution of the famous Poincaré conjecture. And Poincaré's reformulation of celestial mechanics and discovery of chaotic motion started the modern theory of dynamical systems. In physics, his insights on the Lorentz group preceded Einstein's, and he was the first to indicate that space and time might be fundamentally atomic. Poincaré the public intellectual did not shy away from scientific controversy, and he defended mathematics against the attacks of logicians such as Bertrand Russell, opposed the views of Catholic apologists, and served as an expert witness in probability for the notorious Dreyfus case that polarized France. Richly informed by letters and documents, Henri Poincaré demonstrates how one man's work revolutionized math, science, and the greater world.
Download or read book Poincar s Prize written by George Szpiro and published by Dutton Books. This book was released on 2007 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a reclusive and eccentric hero, dramatic turns, and a million-dollar payoff, Poincare's Prize is the stuff of great fiction. Amazingly, the story unveiled in it is true. >In the world of math, the Poincare Conjecture was a holy grail. Decade after decade the theorem that informs how we understand the shape of the universe defied every effort to prove it. Now, after more than a century, an eccentric Russian recluse has found the solution to one of the seven greatest math problems of our time, earning the right to claim the first one-million-dollar Millennium math prize. >George Szpiro begins his masterfully told story in 1904 when Frenchman Henri Poincare formulated a conjecture about a seemingly simple problem. Imagine an ant crawling around on a large surface. How would it know whether the surface is a flat plane, a round sphere, or a bagel- shaped object? The ant would need to lift off into space to observe the object. How could you prove the shape was spherical without actually seeing it? Simply, this is what Poincare sought to solve.
Download or read book Ricci Flow and the Poincare Conjecture written by John W. Morgan and published by American Mathematical Soc.. This book was released on 2007 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: For over 100 years the Poincare Conjecture, which proposes a topological characterization of the 3-sphere, has been the central question in topology. Since its formulation, it has been repeatedly attacked, without success, using various topological methods. Its importance and difficulty were highlighted when it was chosen as one of the Clay Mathematics Institute's seven Millennium Prize Problems. in 2002 and 2003 Grigory Perelman posted three preprints showing how to use geometric arguments, in particular the Ricci flow as introduced and studied by Hamilton, to establish the Poincare Conjecture in the affirmative. This book provides full details of a complete proof of the Poincare Conjecture following Perelman's three preprints. After a lengthy introduction that outlines the entire argument, the book is divided into four parts. The first part reviews necessary results from Riemannian geometry and Ricci flow, including much of Hamilton's work. The second part starts with Perelman's length function, which is used to establish crucial non-collapsing theorems. Then it discusses the classification of non-collapsed, ancient solutions to the Ricci flow equation. The third part concerns the existence of Ricci flow with surgery for all positive time and an analysis of the topological and geometric changes introduced by surgery. The last part follows Perelman's third preprint to prove that when the initial Riemannian 3-manifold has finite fundamental group, Ricci flow with surgery becomes extinct after finite time. The proofs of the Poincare Conjecture and the closely related 3-dimensional spherical space-form conjectu The existence of Ricci flow with surgery has application to 3-manifolds far beyond the Poincare Conjecture. It forms the heart of the proof via Ricci flow of Thurston's Geometrization Conjecture. Thurston's Geometrization Conjecture, which classifies all compact 3-manifolds, will be the subject of a follow-up article. The organization of the material in this book differs from that given by Perelman. From the beginning the authors present all analytic and geometric arguments in the context of Ricci flow with surgery. in addition, the fourth part is a much-expanded version of Perelman's third preprint; it gives the first complete and detailed proof of the finite-time extinction theorem. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology. Clay Mathematics Institute Monograph Series The Clay Mathematics Institute Monograph Series publishes selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas. Information for our distributors: Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).
Download or read book The Tenth Witness written by Leonard J. Rosen and published by Permanent Press (NY). This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this prequel to All cry chaos, engineer Henri Poincaré, not yet an Interpol agent, is working during 1978 on salvage of a shipwreck off the Dutch coast when he meets Liesel Kraus, heir to the Kraus Steel Co. As the two become close, Henri finds disturbing evidence about Liesel's father Otto's conduct during the Nazi era.
Download or read book Perfect Rigour written by Masha Gessen and published by Icon Books Ltd. This book was released on 2011-03-03 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2006, an eccentric Russian mathematician named Grigori Perelman solved one of the world's greatest intellectual puzzles. The Poincare conjecture is an extremely complex topological problem that had eluded the best minds for over a century. In 2000, the Clay Institute in Boston named it one of seven great unsolved mathematical problems, and promised a million dollars to anyone who could find a solution. Perelman was awarded the prize this year - and declined the money. Journalist Masha Gessen was determined to find out why. Drawing on interviews with Perelman's teachers, classmates, coaches, teammates, and colleagues in Russia and the US - and informed by her own background as a math whiz raised in Russia - she set out to uncover the nature of Perelman's astonishing abilities. In telling his story, Masha Gessen has constructed a gripping and tragic tale that sheds rare light on the unique burden of genius.
Download or read book All Cry Chaos written by Leonard Rosen and published by Permanent Press (NY). This book was released on 2011-09 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: All Cry Chaos, a debut thriller by the immensely gifted Leonard Rosen, is a masterful and gripping tale that literally reaches for the heavens. The action begins when mathematician James Fenster is assassinated on the eve of a long-scheduled speech at a World Trade Organization meeting. The hit is as elegant as it is bizarre. Fenster's Amsterdam hotel room is incinerated, yet the rest of the building remains intact. The murder trail leads veteran Interpol agent Henri Poincare on a high-stakes, world-crossing quest for answers. Together with his chain-smoking, bon vivant colleague Serge Laurent, Poincare pursues a long list of suspects: the Peruvian leader of the Indigenous Liberation Front, Rapture-crazed militants, a hedge fund director, Fenster's elusive ex-fiance, and a graduate student in mathematics. Poincare begins to make progress in America, but there is a prodigious hatred trained on him --some unfinished business from a terrifying former genocide case-- and he is called back to Europe to face the unfathomable. Stripped down and in despair, tested like Job, he realizes the two cases might be connected and he might be the link.
Download or read book The Three Body Problem and the Equations of Dynamics written by Henri Poincaré and published by Springer. This book was released on 2017-05-11 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is an accurate and readable translation of a seminal article by Henri Poincaré that is a classic in the study of dynamical systems popularly called chaos theory. In an effort to understand the stability of orbits in the solar system, Poincaré applied a Hamiltonian formulation to the equations of planetary motion and studied these differential equations in the limited case of three bodies to arrive at properties of the equations’ solutions, such as orbital resonances and horseshoe orbits. Poincaré wrote for professional mathematicians and astronomers interested in celestial mechanics and differential equations. Contemporary historians of math or science and researchers in dynamical systems and planetary motion with an interest in the origin or history of their field will find his work fascinating.
Download or read book Science and Hypothesis written by Henri Poincaré and published by . This book was released on 1905 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Galileo Unbound written by David D. Nolte and published by Oxford University Press. This book was released on 2018-07-12 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Galileo Unbound traces the journey that brought us from Galileo's law of free fall to today's geneticists measuring evolutionary drift, entangled quantum particles moving among many worlds, and our lives as trajectories traversing a health space with thousands of dimensions. Remarkably, common themes persist that predict the evolution of species as readily as the orbits of planets or the collapse of stars into black holes. This book tells the history of spaces of expanding dimension and increasing abstraction and how they continue today to give new insight into the physics of complex systems. Galileo published the first modern law of motion, the Law of Fall, that was ideal and simple, laying the foundation upon which Newton built the first theory of dynamics. Early in the twentieth century, geometry became the cause of motion rather than the result when Einstein envisioned the fabric of space-time warped by mass and energy, forcing light rays to bend past the Sun. Possibly more radical was Feynman's dilemma of quantum particles taking all paths at once — setting the stage for the modern fields of quantum field theory and quantum computing. Yet as concepts of motion have evolved, one thing has remained constant, the need to track ever more complex changes and to capture their essence, to find patterns in the chaos as we try to predict and control our world.
Download or read book Real Analysis written by Barry Simon and published by American Mathematical Soc.. This book was released on 2015-11-02 with total page 811 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and spaces. Finally it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.
Download or read book The Nation written by and published by . This book was released on 1912 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: