EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Plasmonic Paper as a Novel Chem bio Detection Platform

Download or read book Plasmonic Paper as a Novel Chem bio Detection Platform written by Limei Tian and published by . This book was released on 2014 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The time varying electric field of electromagnetic (EM) radiation causes oscillation of conduction electrons of metal nanoparticles. The resonance of such oscillation, termed localized surface plasmon resonance (LSPR), falls into the visible spectral region for noble metals such as gold, silver and copper. LSPR of metal nanostructures is sensitive to numerous factors such as composition, size, shape, dielectric properties of surrounding medium, and proximity to other nanostructures (plasmon coupling). The sensitivity of LSPR to the refractive index of surrounding medium renders it an attractive platform for chemical and biological sensing. When the excitation light is in resonance with the plasmon frequency of the metal nanoparticle, it radiates a characteristic dipolar radiation causing a characteristic spatial distribution in which certain areas show higher EM field intensity, which is manifested as electromagnetic field enhancement. Surface enhanced Raman scattering (SERS) involves dramatic enhancement of the intensity of the Raman scattering from the analyte adsorbed on or in proximity to a nanostructured metal surface exhibiting such strong EM field enhancement. Both LSPR and SERS have been widely investigated for highly sensitive and label-free chemical & biological sensors. Most of the SERS/LSPR sensors demonstrated so far rely on rigid planar substrates (e.g., glass, silicon) owing to the well-established lithographic approaches, which are routinely employed for either fabrication or assembly of plasmonic nanotransducers. In many cases, their rigid nature results in low conformal contact with the sample and hence poor sample collection efficiency. We hypothesized that paper substrates are an excellent alternative to conventional rigid substrates to significantly improve the (multi- )functionality of LSPR/SERS substrates, dramatically simplify the fabrication procedures and lower the cost. The choice of paper substrates for the implementation of SERS/LSPR sensors is rationalized by numerous advantages such as (i) high specific surface area resulting in large dynamic range (ii) excellent wicking properties for rapid uptake and transport of analytes to test domains (iii) compatibility with conventional printing approaches, enabling multi-analyte plasmonic sensors (iv) significant reduction in cost (v) smaller sample volume requirement (vi) easy disposability. In this work, we have introduced novel SERS and LSPR substrates based on conventional filter paper decorated with plasmonic nanostructures, called plasmonic paper. A flexible SERS substrate based on common filter paper adsorbed with gold nanostructures allows conformal contact with real-world surfaces, enabling rapid trace detection. To realize multifunctional SERS substrates, paper substrates were cut into star-shaped structures and the fingers were differentially functionalized with polyelectrolytes that allows separation and pre-concentration of different components of a complex sample in a small surface area by taking advantage of the properties of cellulose paper and shape-enhanced capillary effect. Plasmonic paper can also serve as a novel LSPR biosensing platform by decorating the paper substrate with biofunctionalized nanostructures. Furthermore, calligraphy approach was employed to create well-isolated test domains on paper substrates using functionalized plasmonic nanostructures as ink for multiplexed chemical sensing and label-free biosensing. These plasmonic paper substrates exhibit excellent sample collection efficiency and do not require complex fabrication processes. This class of substrates is expected to have applications not only to first responders and military personal but also to several areas of medical, food analysis, and environmental research.

Book Emerging Nanotechnologies for Medical Applications

Download or read book Emerging Nanotechnologies for Medical Applications written by Nabeel Ahmad and published by Elsevier. This book was released on 2023-02-07 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emerging Nanotechnologies for Medical Applications focuses on both commercial and premarket tools and their applications in medicine. The book develops the concept of integrating different technologies along a hierarchical structure of biological systems and clarifies biomechanical interactions on different levels for the analysis of multiscale pathophysiological phenomena. With a focus on nano-scale processes and biomedical applications, it demonstrates how knowledge can be utilized in a range of areas, including the diagnosis and treatment of various human diseases, and in alternative energy production. This book is an important reference source for scientists and researchers involved in micro- and nano-engineering, bio-nanotechnology, biomedical engineering, nanomedicine, and industries involved with optical devices, computer simulation and pharmaceuticals. Shows how nanotechnology is being used to improve outcomes in areas of cancer, tissue grafting, and printing drugs Explores a variety of nanoengineering techniques used for biomedical applications, including for cardiovascular, renal and dental treatments Assesses the major challenges of manufacturing nanomaterials-based medicines on an industrial scale

Book Application of Nano plasmonics for SERS Bio detection and Photocatalysis in the Same Platform

Download or read book Application of Nano plasmonics for SERS Bio detection and Photocatalysis in the Same Platform written by Muhammad Rubaiet Shattique and published by . This book was released on 2018 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nano-biological systems interfacing nano-structured solid surfaces with biological compounds such as oligonucleotides or proteins are highly regarded as enabling materials for biosensing and biocatalysis applications. In particular, nanostructures of noble metals such as gold or silver, when exposed to light, exhibit a phenomenon known as surface plasmon resonance. When a proper metal nanostructure (plasmonic substrate) is exposed to light, very efficient absorption of incoming photons is possible, resulting in a buildup of localized high-energy regions, or “hot-spots”, where energetic carriers or “hot carriers” can be created. These hot-carriers can be used to catalyze desired chemical transformations in materials located nearby. Furthermore, plasmonic hot-spots are also known to enhance inelastic scattering of light by the same materials, promising multi-functional applications that combine photo-catalytic stimulation of materials with their ultrasensitive characterization in the same design. In this thesis work, we developed a conjugate nano-biological system interfacing plasmonic gold nanostructures with thiolated single-stranded DNA carrying an important reduction-oxidation indicator, methylthioninium chloride, also known as methylene blue. Using surface-enhanced Raman spectroscopy, we have detected characteristic bands of DNA-bound immobilized methylene blue in sub-monolayer quantities. We also have detected reversible reduction-oxidation of methylene blue during laser excitation of the samples at neutral pH, in the absence of electrodes or chemical agents.

Book Plasmonic Nanosensors for Biological and Chemical Threats

Download or read book Plasmonic Nanosensors for Biological and Chemical Threats written by Adil Denizli and published by CRC Press. This book was released on 2024-06-14 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biological and chemical warfare agents, including viruses, bacteria, and explosive and radioactive compounds, can induce illness or death in humans, animals, and plants. Plasmonic nanosensors as detection tools of these agents offer significant advantages, including rapid detection, sensitivity, selectivity, and portability. This book explores novel and updated research on different types of plasmonic nanosensors for analysis of biological and chemical threat agents. It covers a brief theory of plasmonic nanosensors, summarizes the state-of-art in the molecular recognition of biological and chemical threat agents, and describes the application of various types of nanosensors in the detection of these threat agents. This book • Brings together recent academic research from an interdisciplinary approach including chemistry, biology, and nanotechnology. • Discusses current trends and developments. • Describes applications of a variety of different types of plasmonic nanosensors. • Explores outlooks and expectations for this technology. Showcasing the latest achievements in plasmonic nanosensors, this book will appeal to researchers in materials, chemical, and environmental engineering as well as chemistry interested in exploring the application of sensors to support environmental monitoring and global health.

Book Plasmonics Powered Hybrid Platform for Label Free Bio sensing

Download or read book Plasmonics Powered Hybrid Platform for Label Free Bio sensing written by ZHONGBO YAN and published by . This book was released on 2017 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surface plasmons (SPs) are coherent delocalized electron oscillations that exist at the metal-dielectric interface. The charge motion in the surface plasmon creates intense electromagnetic fields at certain locations of the interface, which are referred to as "hot spots". The intense electromagnetic field associated with the excitation of surface plasmons has found applications in various bio-sensing techniques. A unique plasmonic hybrid platform, graphene-Au pyramid structure, was invented by our group. The hybrid platform provides an ultra intense surface plasmon field and has a bio-compatible surface, making it a powerful tool for bio-sensing. The work to refine the nanostructure for generation of stronger surface plasmon field has been intensively explored by my group mates. Aside from generation of stronger surface plasmon fields, this research was done to improve several surface plasmon based techniques through the hybrid platform and to explore their applications in the label free bio-sensing field. The ultimate goal of my thesis work is to develop an integrated system for biological detection and analysis with high sensitivity and specificity. In the bio-sensing field, especially in regards to remote detection in an analyte, the biological entities (e.g. biomolecules and cells) of interest are always dispersed in the solution. This would be a concern if we were using plasmon resonance powered techniques by themselves. The first part of this research focuses on Plasmonic tweezers, a manipulation technique to attract and capture biological entities onto the plasmonics surface. Plasmonic tweezers is noninvasive manipulation technique, in which a near-field gradient force is generated by the surface plasmon field around hot spots. It can be used to precisely control the position of biological entities. However, the near-field property of plasmonic tweezer limits its functional range in capturing biological samples. To remedy this problem, electrostatic bias is used in conjunction with plasmonic tweezers. Electrostatic bias produces a long range force whose effects spread across the entire space between a pair of electrodes. It compensates for the plasmonic tweezers' short range limitation by "condensing" molecules throughout the analyte to a layer immediately adjacent to the plasmonic surface. By using plasmonic tweezers and an electrostatic force together, the biological entities can be confined to sub-wavelength dimensions near the hot spots. For the plasmonics based bio-detection methods, the hot spots are always where the signal generates from. Therefore, this self-aligned trapping method is used to effectively increase the sensitivity and selectivity of bio-sensing techniques. After the biological entities are attracted to the plasmonics surface, the next step is to develop specific detection techniques. The second part of this thesis is to demonstrate the capability of the surface-enhanced Raman spectroscopy (SERS) techniques based on a nanopyramid array hybrid platform. SERS is a surface-sensitive technique employing strong plasmon resonance fields to enhance the Raman signal by several orders of magnitude. This enables even the detection of single molecules. Also, compared with other nanostructures, the hybrid platform has distinct advantages. The nanopyramid array is an open structure, in which hot spots are located between neighboring pyramids. As such, large biomolecules and biological entities can easily move into these regions and their Raman signals can be enhanced. By introducing single layer graphene, the hybrid platform provides a bio-friendly surface, preventing biological entities from being affected by toxic metals such as silver. The signal of the graphene layer can also serve as a built-in gauge of local electromagnetic field intensity used to indicate the distribution of the hot spots. These properties make the hybrid platform a powerful tool for biological detection and analysis. In this thesis work, the hybrid platform is employed to generate SERS signals of biological samples, in particular, the characterization of exosomes and T-cells. However, the biological entities would naturally bring variations to the SERS signals due variations in the type and quantity of their chemical compositions. In our research, principle component analysis (PCA) is also employed to interpret the SERS data and provide a statistical investigation of the biological samples. To achieve dynamic monitoring of biological processes, higher sensitivity and temporal resolution are preferred. In the last part of this thesis, another label free bio-sensing technique, surface-enhanced coherent anti-Stokes Raman spectroscopy (SECARS), was developed based on the hybrid platform. A multiplicative enhancement of the Raman signal over CARS and SERS is achieved using a novel SECARS setup. Compared to previous setups, it shows a broadband feature with high spectral resolution, which is preferred in biological detection. The novel setup based on the hybrid platform could be a powerful tool for not only the characterization of biological entities but also the dynamic monitoring of various biological processes.

Book Plasmonic Nanosensors for Biological and Chemical Threats

Download or read book Plasmonic Nanosensors for Biological and Chemical Threats written by Adil Denizli and published by CRC Press. This book was released on 2024-06-04 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores research on various plasmonic nanosensors for analysis of biological and chemical threat agents. It covers a brief theory of plasmonic nanosensors, summarizes molecular recognition of biological and chemical threat agents, and describes the application of nanosensors in the detection of these threat agents.

Book Plasmonic Sensors and their Applications

Download or read book Plasmonic Sensors and their Applications written by Adil Denizli and published by John Wiley & Sons. This book was released on 2021-11-22 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plasmonic Sensors and their Applications A practically-focused reference and guide on the use of plasmonic sensing as a faster and cheaper alternative to conventional sensing platforms Plasmons, the collective oscillations of electrons occurring at the interface between any two materials, are sensitive to changes in dielectric properties near metal surfaces. Plasmonic sensors enable the real-time study of unique surface properties by monitoring the effect of the material interaction at the sensor surface. Plasmonic sensing techniques offer fast, label-free analysis, and hold advantages over labelling techniques such as ELISA (enzyme-linked immunosorbent assay). Plasmonic Sensors and their Applications examines the development and use of highly sensitive and selective plasmonic sensing platforms in chemistry, biotechnology, and medicine. Contributions by an international panel of experts provide timely and in-depth coverage of both real-world applications and academic research in the dynamic field. The authors describe advances in nanotechnology, polymer chemistry, and biomedicine, explore new and emerging applications of plasmonic sensing, discuss future trends and potential research directions, and more. This authoritative volume: Demonstrates why plasmonic sensing is a profitable method for easy and label-free analysis in real-time Covers a variety of applications of plasmonic sensors, such as disease diagnostics, vitamin detection, and detection of chemical and biological warfare agents Includes a brief introduction to the history and development of plasmonic sensors Provides concise theory and background for every application covered in the text Plasmonic Sensors and their Applications is an invaluable resource for analytical chemists, biochemists, biotechnologists, protein and surface chemists, and advanced students of biotechnology.

Book Paper Based Sensors

    Book Details:
  • Author :
  • Publisher : Elsevier
  • Release : 2020-06-13
  • ISBN : 044464346X
  • Pages : 480 pages

Download or read book Paper Based Sensors written by and published by Elsevier. This book was released on 2020-06-13 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Paper Based Sensors, Volume 89, the latest release in this comprehensive series that gathers the most important issues relating to the design and application of these cost-effective devices used in many industries, including health and environment diagnostics, safety and security, chemistry, optics, electrochemistry, nanoscience and nanotechnologies, presents the latest updates in the field. Chapters in this new release include Exploring paper as a substrate for electrochemical micro-devices, Paper-based sensors for application in biological compound detection, Printed paper-based (bio)sensors: design, fabrication and applications, Paper-based electrochemical sensing devices, Multifarious aspects of electrochemical paper-based (bio)sensors, Paper Based Biosensors for Clinical and Biomedical Applications, and more. Provides updates on the latest design in paper-based sensors using various nano and micromaterials Includes optical/electrical-based detection modes integrated within paper-based platforms Covers applications of paper-based platforms in diagnostics and other industries

Book Paper Based Analytical Devices for Chemical Analysis and Diagnostics

Download or read book Paper Based Analytical Devices for Chemical Analysis and Diagnostics written by William R. de Araujo and published by Elsevier. This book was released on 2021-10-27 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Paper-Based Analytical Devices for Chemical Analysis and Diagnostics is a valuable source of information for those interested in microfluidics, bioanalytical devices, chemical instrumentation/mechanization, in-field analysis, and more. This book provides a critical review of the scientific and technological progress of paper-based devices, as well as future trends in the field of portable paper-based sensors for chemical analysis and diagnostics directly at point of need. It uniquely focuses on the analytical techniques associated with each type of device, providing a practical framework for any researcher to use while learning how to use new types of devices in their work, deciding which ones are best for their needs, developing new devices, or working toward commercialization. Reviews the evolution of this area and offers predictions for the future of the field of paper-based analytical devices Explores the analytical techniques used in development of paper-based devices Discusses challenges and shortcomings specific to each type of device, helping users and developers to avoid pitfalls

Book Principles of Surface Enhanced Raman Spectroscopy

Download or read book Principles of Surface Enhanced Raman Spectroscopy written by Eric Le Ru and published by Elsevier. This book was released on 2008-11-17 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt: SERS was discovered in the 1970s and has since grown enormously in breadth, depth, and understanding. One of the major characteristics of SERS is its interdisciplinary nature: it lies at the boundary between physics, chemistry, colloid science, plasmonics, nanotechnology, and biology. By their very nature, it is impossible to find a textbook that will summarize the principles needed for SERS of these rather dissimilar and disconnected topics. Although a basic understanding of these topics is necessary for research projects in SERS with all its many aspects and applications, they are seldom touched upon as a coherent unit during most undergraduate studies in physics or chemistry. This book intends to fill this existing gap in the literature. It provides an overview of the underlying principles of SERS, from the fundamental understanding of the effect to its potential applications. It is aimed primarily at newcomers to the field, graduate students, researchers or scientists, attracted by the many applications of SERS and plasmonics or its basic science. The emphasis is on concepts and background material for SERS, such as Raman spectroscopy, the physics of plasmons, or colloid science, all of them introduced within the context of SERS, and from where the more specialized literature can be followed. Represents one of very few books fully dedicated to the topic of surface-enhanced Raman spectroscopy (SERS) Gives a comprehensive summary of the underlying physical concepts around SERS Provides a detailed analysis of plasmons and plasmonics

Book Novel Nanostructured Materials for Electrochemical Bio sensing Applications

Download or read book Novel Nanostructured Materials for Electrochemical Bio sensing Applications written by Jamballi G. Manjunatha and published by Elsevier. This book was released on 2023-11-21 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Novel Nanostructured Materials for Electrochemical Bio-sensing Applications presents a detailed overview into the fabrication of electrochemical bio-sensing devices. The book addresses the challenges and opportunities relating to sustainable and biocompatible sensors from food, water and wearable applications to the various nanostructured biocompatible materials required for sensor fabrication. In addition, it explores the connection between nanomaterials and sensors and takes into consideration different and novel approaches such as toxic materials monitoring and health issues correlated with the use of nanomaterials. Users will find exciting insight into innovations in nanostructured electrochemical biosensing. By providing its audience with fundamentals, limitations, challenges, future perspectives and practical sustainability, this book will serve as a reference source researchers and engineers within analytical chemistry and electrochemistry. Showcases the latest progress in new nanostructured materials, bio-sensing types and applications Provides a comparative vision of electrochemical bio-sensing with other biosensors Discusses the economics, commercialization, toxicity and life line aspects of electrochemical biosensors

Book Advances in Medical Imaging  Detection  and Diagnosis

Download or read book Advances in Medical Imaging Detection and Diagnosis written by Raj Bawa and published by CRC Press. This book was released on 2023-10-18 with total page 1426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Medical care is the most critical issue of our time and will be so for the foreseeable future. In this regard, the pace and sophistication of advances in medicine in the past two decades have been truly breathtaking. This has necessitated a growing need for comprehensive reference resources that highlight current issues in specific sectors of medicine. Keeping this in mind, each volume in the Current Issues in Medicine series is a stand‐alone text that provides a broad survey of various important topics in a focused area of medicine—all accomplished in a user-friendly yet interconnected format. This volume addresses advances in medical imaging, detection, and diagnostic technologies. Technological innovations in these sectors of medicine continue to provide for safer, more accurate, and faster diagnosis for patients. This translates into superior prognosis and better patient compliance, while reducing morbidity and mortality. Hence, it is imperative that practitioners stay current with these latest advances to provide the best care for nursing and clinical practices. While recognizing how expansive and multifaceted these areas of medicine are, Advances in Medical Imaging, Detection, and Diagnosis addresses crucial recent progress, integrating the knowledge and experience of experts from academia and the clinic. The multidisciplinary approach reflected makes this volume a valuable reference resource for medical practitioners, medical students, nurses, fellows, residents, undergraduate and graduate students, educators, venture capitalists, policymakers, and biomedical researchers. A wide audience will benefit from having this volume on their bookshelf: health care systems, the pharmaceutical industry, academia, and government.

Book Novel Polymeric Biochips for Enhanced Detection of Infectious Diseases

Download or read book Novel Polymeric Biochips for Enhanced Detection of Infectious Diseases written by Samira Hosseini and published by Springer. This book was released on 2015-11-21 with total page 63 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the creation and development of polymeric platforms (different compositions) from a specific polymer system. This system can be used as an adaptive technique for producing sensitive analytical devices, or for simple integration into existing bioanalytical tools in order to enhance the detection signal.

Book Smart Nanodevices for Point of Care Applications

Download or read book Smart Nanodevices for Point of Care Applications written by Suvardhan Kanchi and published by CRC Press. This book was released on 2022-06-23 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Smart Nanodevices for Point-of-Care Applications examines the latest trends on the capabilities of nanomaterials for point-of-care (PoC) diagnostics and explains how these materials can help to strengthen, miniaturize, and improve the quality of diagnostic devices. A thorough explanation of all-in-one nanosmart devices is included, incorporating all of the applications and fundamentals of these smart devices. This book provides practical information on the following: novel and effective smart materials, better-quality health management, effective management of a disease, potential point-of-care devices, and mobile nanosensors. Additional Features Includes in-depth research based collation of the latest trends of smart devices Provides practical information on all-in-one nanosmart devices Explains how nanomaterials can help to strengthen and improve the quality of diagnostic devices Emphasizes the development of smart nanodevices, especially the miniaturization aspect

Book Nanosensors

Download or read book Nanosensors written by Vinod Kumar Khanna and published by CRC Press. This book was released on 2021-02-25 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanosensors are innovative devices that exploit the unique properties exhibited by matter at the nanoscale. A growing and exciting field, nanosensors have recently spurred considerable research endeavors across the globe, driving a need for the development of new device concepts and engineering nanostructured materials with controlled properties. Nanosensors: Physical, Chemical, and Biological, Second Edition offers a panoramic view of the field and related nanotechnologies with extraordinary clarity and depth. Presenting an interdisciplinary approach, blending physics, chemistry and biology, this new edition is broad in scope and organised into six parts; beginning with the fundamentals before moving onto nanomaterials and nanofabrication technologies in the second part. The third and fourth parts provide a critical appraisal of physical nanosensors, and explore the chemical and biological categories of nanosensors. The fifth part sheds light on the emerging applications of nanosensors in the sectors of society, industry, and defense and details the cutting-edge applications of state-of-the-art nanosensors in environmental science, food technology, medical diagnostics, and biotechnology. The final part addresses self-powering and networking issues of nanosensors, and provides glimpses of future trends. This is an ideal reference for researchers and industry professionals engaged in the frontier areas of material science and semiconductor fabrication as well as graduate students in physics and engineering pursuing electrical engineering and electronics courses with a focus on nanoscience and nanotechnology. Key features: Provides an updated, all-encompassing exploration of contemporary nanosensors and highlights the exclusive nanoscale properties on which nanosensors are designed. Presents an accessible approach with a question-and-answer format to allow an easy grasp of the intricacies involved in the complex working mechanisms of devices. Contains clear, illustrative diagrams enabling the visualization of nanosensor operations, along with worked examples, end of chapter questions, and exhaustive up-to-date bibliographies appended to each chapter.

Book Advanced Materials and Techniques for Biosensors and Bioanalytical Applications

Download or read book Advanced Materials and Techniques for Biosensors and Bioanalytical Applications written by Pranab Goswami and published by CRC Press. This book was released on 2020-11-01 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bioanalytical science and its technological subdomain, biosensors, are ever-evolving subjects, striving for rapid improvement in terms of performance and expanding the target range to meet the vast societal and market demands. The key performance factors for a biosensor that drive the research are selectivity, sensitivity, response time, accuracy, and reproducibility, with additional requirements of its portability and inexpensive nature. These performance factors are largely governed by the materials and techniques being used in these bioanalytical platforms. The selection of materials to meet these requirements is critical, as their interaction or involvement with the biological recognition elements should initiate or improve these performance factors. The technique discussed primarily applies to transducers involved in converting a biochemical signal to optical or electrical signals. Over the years, the emergence of novel materials and techniques has drastically improved the performance of these bioanalytical systems, enabling them to expand their analytical horizon. These advanced materials and techniques are central to modern bioanalytical and biosensor research. Advanced Materials and Techniques for Biosensors and Bioanalytical Applications provides a comprehensive review of the subject, including a knowledge platform for both academics and researchers. Considering biosensors as a central theme to this book, an outline on this subject with background principles has been included, with a scope of extending the utility of the book to coursework in graduate and postgraduate schools. Features: • Basic principles on different classes of biosensors, recent advances and applications • Smart materials for biosensors and other rapid, portable detection devices • Metal nanoparticles and nanocrystals for analytical applications • Carbon-based nanoparticles and quantum dots for sensing applications • Nanozymes as potential catalysts for sensing applications • Bioelectrochemiluminescence and photoelectrochemical-based biosensors • Paper electronics and paper-based biosensors • Microbial biosensors: artificial intelligence, genetic engineering, and synthetic biology • Biofuel cells as a signal transduction platform • FET-based biosensors, including ISFET and BioFET This book serves as a reference for scientific investigators and a textbook for a graduate-level course in biosensors and advanced bioanalytical techniques.

Book The Detection of Biomarkers

Download or read book The Detection of Biomarkers written by Sibel A. Ozkan and published by Academic Press. This book was released on 2021-12-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reliable, precise and accurate detection and analysis of biomarkers remains a significant challenge for clinical researchers. Methods for the detection of biomarkers are rather complex, requiring pre-treatment steps before analysis can take place. Moreover, comparing various biomarker assays and tracing research progress in this area systematically is a challenge for researchers. The Detection of Biomarkers presents developments in biomarker detection, including methods tools and strategies, biosensor design, materials, and applications. The book presents methods, materials and procedures that are simple, precise, sensitive, selective, fast and economical, and therefore highly practical for use in clinical research scenarios. This volume situates biomarker detection in its research context and sets out future prospects for the area. Its 20 chapters offer a comprehensive coverage of biomarkers, including progress on nanotechnology, biosensor types, synthesis, immobilization, and applications in various fields. The book also demonstrates, for students, how to synthesize and immobilize biosensors for biomarker assay. It offers researchers real alternative and innovative ways to think about the field of biomarker detection, increasing the reliability, precision and accuracy of biomarker detection. Locates biomarker detection in its research context, setting out present and future prospects Allows clinical researchers to compare various biomarker assays systematically Presents new methods, materials and procedures that are simple, precise, sensitive, selective, fast and economical Gives innovative biomarker assays that are viable alternatives to current complex methods Helps clinical researchers who need reliable, precise and accurate biomarker detection methods