EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Plasmonic Effects in Metal semiconductor Nanostructures

Download or read book Plasmonic Effects in Metal semiconductor Nanostructures written by Alexey A. Toropov and published by Oxford University Press, USA. This book was released on 2015 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most promising trends in modern nanophotonics is the employment of plasmonic effects in the engineering of advanced device nanostructures. This book implements the binocular vision of such a complex metal-semiconductor system, examining both the constituents and reviewing the characteristics of promising constructive materials.

Book Plasmonic Effects in Metal Semiconductor Nanostructures

Download or read book Plasmonic Effects in Metal Semiconductor Nanostructures written by Alexey A. Toropov and published by OUP Oxford. This book was released on 2015-04-02 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal-semiconductor nanostructures represent an important new class of materials employed in designing advanced optoelectronic and nanophotonic devices, such as plasmonic nanolasers, plasmon-enhanced light-emitting diodes and solar cells, plasmonic emitters of single photons, and quantum devices operating in infrared and terahertz domains. The combination of surface plasmon resonances in conducting structures, providing strong concentration of an electromagnetic optical field nearby, with sharp optical resonances in semiconductors, which are highly sensitive to external electromagnetic fields, creates a platform to control light on the nanoscale. The design of the composite metal-semiconductor system imposes the consideration of both the plasmonic resonances in metal and the optical transitions in semiconductors - a key issue being their resonant interaction providing a coupling regime. In this book the reader will find descriptions of electrodynamics of conducting structures, quantum physics of semiconductor nanostructures, and guidelines for advanced engineering of metal-semiconductor composites. These constituents form together the physical basics of the metal-semiconductor plasmonics, underlying many effective practical applications. The list of covered topics also includes the review of recent results, such as the achievement of a strong coupling regime, and the preservation of non-classical statistics of photons in plasmonic cavities combined with semiconductor nanostructures.

Book Plasmonic Catalysis

Download or read book Plasmonic Catalysis written by Pedro H.C. Camargo and published by John Wiley & Sons. This book was released on 2021-06-21 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore this comprehensive discussion of the foundational and advanced topics in plasmonic catalysis from two leaders in the field Plasmonic Catalysis: From Fundamentals to Applications delivers a thorough treatment of plasmonic catalysis, from its theoretical foundations to myriad applications in industry and academia. In addition to the fundamentals, the book covers the theory, properties, synthesis, and various reaction types of plasmonic catalysis. It also covers its applications in reactions including oxidation, reduction, nitrogen fixation, CO2 reduction, and more. The book characterizes plasmonic catalytic systems and describes their properties, tackling the integration of conventional methods as well as new methods able to unravel the optical, electronic, and chemical properties of these systems. It also describes the fundamentals of controlled synthesis of metal nanoparticles relevant to plasmonic catalysis, as well as practical examples thereof. Plasmonic Catalysis covers a wide variety of other practical topics in the field, including hydrogenation reactions and the harvesting of LSPR-excited charge carriers. Readers will also benefit from the inclusion of: A thorough introduction to plasmonic catalysis, a theory of plasmons for catalysis and mechanisms, as well as optical properties of plasmonic-catalytic nanostructures An exploration of the synthesis of plasmonic nanoparticles for photo and electro catalysis, as well as plasmonic catalysis towards oxidation reactions and hydrogenation reactions Discussions of plasmonic catalysis for multi-electron processes and artificial photosynthesis and N2 fixation An examination of control over reaction selectivity in plasmonic catalysis Perfect for catalytic chemists, materials scientists, photochemists, and physical chemists, Plasmonic Catalysis: From Fundamentals to Applications will also earn a place in the libraries of physicists who seek a one-stop resource to enhance their understanding of applications in plasmonic catalysis.

Book Exciton Plasmon Interactions in Metal Semiconductor Nanostructures

Download or read book Exciton Plasmon Interactions in Metal Semiconductor Nanostructures written by Yikuan Wang and published by LAP Lambert Academic Publishing. This book was released on 2012-07 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past decades, the use of surface plasmons (SPs) of noble metal nano-particles to control light emission on the nanometer scale has increased rapidly, due to their field enhancement and other special properties. With this boom in physics, chemistry, biomedical science and engineering has also come a rise in the need for understanding the dynamics of light emission in these systems. Traditional photoluminescence spectrum only gives limited information on quantum dot emission under SP resonances. This book, therefore, uses modern Time-Correlated Single Photon Counting technique and other approaches to study SPs in nanoparticle arrays, and their effects on semiconductor quantum dot emission. The observed SP resonances in metal nano-disc arrays enhances the CdSe/ZnS (core/shell) quantum dot emission in a way that is dependent on dipole emission angle and photon polarization, which is fully explained by quantum electrodynamics. This fundamental finding could be used to control the light emission in plasmonic device applications.

Book Plasmonic Metal Nanostructures

Download or read book Plasmonic Metal Nanostructures written by Caixia Kan and published by John Wiley & Sons. This book was released on 2024-02-13 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Firsthand insights on a unique class of optoelectronic materials, covering technologies and applications in catalysis, sensing, and spectroscopy Plasmonic Metal Nanostructures provides broad coverage of the field of plasmonic technologies, from fundamentals to real-world applications such as highly sensitive spectroscopy and surface analysis techniques, summarizing the recent progress in plasmonics and their applications, with a focus on comprehensive and authoritative discussions of fabrication and characterization of the materials and their technological uses. The text also addresses current trends and advances in materials for plasmonics, such as nanostructures with novel shapes, composite nanostructures, and thin films. Starting with an overview of optical properties in materials from macro- to micro- and nanoscale, the text then moves on to discuss the fundamentals and dielectric modifications and advanced characterization methods of plasmonic nanostructures. Next, the latest development of metal nanostructures, such as core-shell and porous nanorods, nanowires for conductive films, new star-like nanoplates, different open nanostructures, and metal-semiconductor composite nanostructures, are explained in detail. The final portion of the text discusses applications of plasmonics for semiconductor optoelectronic devices, catalysis, sensing, SERS (surface-enhanced Raman Spectroscopy), and energy. Written by a highly qualified academic, Plasmonic Metal Nanostructures covers sample topics such as: Drude model for free electron gas, dielectric function of the free electron gas, surface plasmon polaritons, plasmon at metal-vacuum interface, and surface plasmon effects Drude-Lorentz model of metal nanoparticles, dielectric properties of complex nanostructures, optical property analysis of isolated nanoparticles, and numerical simulation of optical properties One-dimensional Au nanostructures, core-shell nanostructures, alloy Au/Ag nanorods, porous nanorods, and yolk-shell nanostructures FCC nanoplates, Au nanoplates with novel and well-defined shapes, metal decorated semiconductors, and optical properties of Au NBP-embedded nanostructures Providing complete coverage of plasmonic nanostructures and their applications in catalysis, sensing, spectroscopy, thin-film, analysis, optoelectronics, and a variety of other fields. The book about Plasmonic Metal Nanostructures is an essential resource for materials scientists, physics researchers and photochemists, along with catalytic, biomedical, and physical chemists.

Book Nanophotonics with Surface Plasmons

Download or read book Nanophotonics with Surface Plasmons written by and published by Elsevier. This book was released on 2006-12-18 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current developments in optical technologies are being directed toward nanoscale devices with subwavelength dimensions, in which photons are manipulated on the nanoscale. Although light is clearly the fastest means to send information to and from the nanoscale, there is a fundamental incompatibility between light at the microscale and devices and processes at the nanoscale. Nanostructured metals which support surface plasmon modes can concentrate electromagnetic (EM) fields to a small fraction of a wavelength while enhancing local field strengths by several orders of magnitude. For this reason, plasmonic nanostructures can serve as optical couplers across the nano–micro interface: metal–dielectric and metal–semiconductor nanostructures can act as optical nanoantennae and enhance light matter coupling in nanoscale devices. This book describes how one can fully integrate plasmonic nanostructures into dielectric, semiconductor, and molecular photonic devices, for guiding photons across the nano–micro interface and for detecting molecules with unsurpassed sensitivity.·Nanophotonics and Nanoplasmonics·Metamaterials and negative-index materials·Plasmon-enhanced sensing and spectroscopy·Imaging and sensing on the nanoscale·Metal Optics

Book Introduction to Metal Nanoparticle Plasmonics

Download or read book Introduction to Metal Nanoparticle Plasmonics written by Matthew Pelton and published by John Wiley & Sons. This book was released on 2013-04-09 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on a popular article in Laser and Photonics Reviews, this book provides an explanation and overview of the techniques used to model, make, and measure metal nanoparticles, detailing results obtained and what they mean. It covers the properties of coupled metal nanoparticles, the nonlinear optical response of metal nanoparticles, and the phenomena that arise when light-emitting materials are coupled to metal nanoparticles. It also provides an overview of key potential applications and offers explanations of computational and experimental techniques giving readers a solid grounding in the field.

Book Collective Plasmon Modes in Gain Media

Download or read book Collective Plasmon Modes in Gain Media written by V.A.G. Rivera and published by Springer. This book was released on 2014-09-03 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book represents the first detailed description, including both theoretical aspects and experimental methods, of the interaction of rare-earth ions with surface plasmon polariton from the point of view of collective plasmon-photon interactions via resonance modes (metal nanoparticles or nanostructure arrays) with quantum emitters (rare-earth ions). These interactions are of particular interest for applications to optical telecommunications, optical displays, and laser solid state technologies. Thus, our main goal is to give a more precise overview of the rapidly emerging field of nanophotonics by means of the study of the quantum properties of light interaction with matter at the nanoscale. In this way, collective plasmon-modes in a gain medium result from the interaction/coupling between a quantum emitter (created by rare-earth ions) with a metallic surface, inducing different effects such as the polarization of the metal electrons (so-called surface plasmon polariton - SPP), a field enhancement sustained by resonance coupling, or transfer of energy due to non-resonant coupling between the metallic nanostructure and the optically active surrounding medium. These effects counteract the absorption losses in the metal to enhance luminescence properties or even to control the polarization and phase of quantum emitters. The engineering of plasmons/SPP in gain media constitutes a new field in nanophotonics science with a tremendous technological potential in integrated optics/photonics at the nanoscale based on the control of quantum effects. This book will be an essential tool for scientists, engineers, and graduate and undergraduate students interested not only in a new frontier of fundamental physics, but also in the realization of nanophotonic devices for optical telecommunication.

Book Solar Energy for Fuels

    Book Details:
  • Author : Harun Tüysüz
  • Publisher : Springer
  • Release : 2015-10-19
  • ISBN : 3319230999
  • Pages : 333 pages

Download or read book Solar Energy for Fuels written by Harun Tüysüz and published by Springer. This book was released on 2015-10-19 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Topics in Current Chemistry presents critical reviews of the present and future trends in modern chemical research. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. Review articles for the individual volumes are invited by the volume editors. Readership: research chemists at universities or in industry, graduate students

Book Plasmonic Effect on Exciton and Multiexciton Dynamics of Quantum Dots Near Metal Nanostructures

Download or read book Plasmonic Effect on Exciton and Multiexciton Dynamics of Quantum Dots Near Metal Nanostructures written by Swayandipta Dey and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent scientific progress has resulted in the development of sophisticated hybrid nanostructures composed of semiconductor nanocrystals (quantum dots, QDs) and metal nanoparticles (MNPs). These hybrid structures open up new possibilities for developing next generation nanoscale optoelectronic devices that combine the best attributes of each component material.The optical response of MNPs is dominated by surface plasmon resonances which create large local electromagnetic field enhancements. When coupled to surrounding semiconductor components, the enhanced local electric field results in strong absorption/emission, alteration in emission decay rates, enhancement in exciton emission and other interesting non-linear effects (multiphoton generation). Although hybrid nanostructures are poised to be utilized in a variety of applications, serious hurdles for the design of new devices still remain. These difficulties largely result from a poor understanding of how the structural components interact at the nanoscale. These synergetic interactions strongly depend on the exact composition and geometry of the structure, and therefore, a quantitative comparison between theory and experiment is often difficult to achieve. My dissertation work primarily focuses on paving a bridge between the experimental and theoretical studies and the mechanisms involved in exciton and multiexciton emission dynamics of single QDs in presence of plasmonic nanostructures by careful consideration of different parameters which significantly affect the interaction between these nanoparticles at a single particle level.

Book Plasmonics and Light   Matter Interactions in Two Dimensional Materials and in Metal Nanostructures

Download or read book Plasmonics and Light Matter Interactions in Two Dimensional Materials and in Metal Nanostructures written by Paulo André Dias Gonçalves and published by Springer Nature. This book was released on 2020-03-19 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis presents a comprehensive theoretical description of classical and quantum aspects of plasmonics in three and two dimensions, and also in transdimensional systems containing elements with different dimensionalities. It focuses on the theoretical understanding of the salient features of plasmons in nanosystems as well as on the multifaceted aspects of plasmon-enhanced light–matter interactions at the nanometer scale. Special emphasis is given to the modeling of nonclassical behavior across the transition regime bridging the classical and the quantum domains. The research presented in this dissertation provides useful tools for understanding surface plasmons in various two- and three-dimensional nanostructures, as well as quantum mechanical effects in their response and their joint impact on light–matter interactions at the extreme nanoscale. These contributions constitute novel and solid advancements in the research field of plasmonics and nanophotonics that will help guide future experimental investigations in the blossoming field of nanophotonics, and also facilitate the design of the next generation of truly nanoscale nanophotonic devices.

Book Synthesis  Characterization  and Applications of Plasmonic Semiconductor Nanocrystals

Download or read book Synthesis Characterization and Applications of Plasmonic Semiconductor Nanocrystals written by Su-Wen Hsu and published by . This book was released on 2014 with total page 151 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor nanostructures are ideal candidates for non-metallic plasmonic materials that operate in the near- to mid-infrared range. In contrast to metal nanostructures, semiconductor nanomaterials have the advantage of possessing tunable carrier concentrations. However, unlike metal nanoparticles which are already widely exploited in plasmonics, little is known about the shape-dependent localized surface plasmon resonances (LSPRs) and near-field electromagnetic behavior of semiconductor nanocrystals. Moreover, a major challenge in the fabrication of plasmonic semiconductor nanomaterials is the ability to control LSPRs by independently varying the size, shape, and carrier density of the nanocrystal. In this dissertation, I describe colloidal synthetic methods for fabricating shaped Cu2-xS nanocrystals in which the morphology and stoichiometry of Cu2-xS can be modulated. These shaped Cu2-xS nanocrystals are used to observe the plasmon response for specific LSPR modes. Specifically, I discuss the plasmon response of Cu2-xS nanodisks as a model nanocrystal system. I demonstrate that LSPR wavelength can be tuned by independently varying the aspect-ratio of the disk and the overall carrier density of the nanocrystal. Increased carrier density in Cu2-xS occurs with oxidation and the formation of copper vacancies, an effect which can be suppressed by carrying out synthesis under an inert atmosphere. Using post-synthetic oxidation, Cu2-xS nanodisks achieve a critical carrier density beyond which the nanocrystals undergo an irreversible phase change, which limits tuning capability. To circumvent this, I use a solvothermal process to generate nanodisks with different crystal phases that enable carrier densities beyond this critical limit. This dissertation also explores the differences in near-field coupling between Cu2-xS nanodisks. These experiments were carried out on self-assembled two-dimensional nanodisk arrays. Varying nanodisk orientation produces a dramatic change in the magnitude and polarization direction of the local field generated by LSPR excitation. Moreover, plasmonic coupling is only observed for Cu2-xS phases that possess carrier densities above a critical value. Overall, this dissertation provides new methods for tuning the plasmonic response of semiconductor nanocrystals by controlling size, shape, and carrier density. It also demonstrates new strategies for designing electromagnetic junctions or coupled plasmonic architectures that operate in the infrared using nanocrystals as building blocks.

Book Nanoplasmonics

    Book Details:
  • Author : Grégory Barbillon
  • Publisher : BoD – Books on Demand
  • Release : 2017-06-21
  • ISBN : 9535132776
  • Pages : 496 pages

Download or read book Nanoplasmonics written by Grégory Barbillon and published by BoD – Books on Demand. This book was released on 2017-06-21 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanoplasmonics is a young topic of research, which is part of nanophotonics and nano-optics. Nanoplasmonics concerns to the investigation of electron oscillations in metallic nanostructures and nanoparticles. Surface plasmons have optical properties, which are very interesting. For instance, surface plasmons have the unique capacity to confine light at the nanoscale. Moreover, surface plasmons are very sensitive to the surrounding medium and the properties of the materials on which they propagate. In addition to the above, the surface plasmon resonances can be controlled by adjusting the size, shape, periodicity, and materials' nature. All these optical properties can enable a great number of applications, such as biosensors, optical modulators, photodetectors, and photovoltaic devices. This book is intended for a broad audience and provides an overview of some of the fundamental knowledges and applications of nanoplasmonics.

Book Bimetallic Nanostructures

Download or read book Bimetallic Nanostructures written by Ya-Wen Zhang and published by John Wiley & Sons. This book was released on 2018-05-16 with total page 738 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systematically summarizes the current status and recent advances in bimetallic structures, their shape-controlled synthesis, properties, and applications Intensive researches are currently being carried out on bimetallic nanostructures, focusing on a number of fundamental, physical, and chemical questions regarding their synthesis and properties. This book presents a systematic and comprehensive summary of the current status and recent advances in this field, supporting readers in the synthesis of model bimetallic nanoparticles, and the exploration and interpretation of their properties. Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics and Sensing Applications is divided into three parts. Part 1 introduces basic chemical and physical knowledge of bimetallic structures, including fundamentals, computational models, and in situ characterization techniques. Part 2 summarizes recent developments in synthetic methods, characterization, and properties of bimetallic structures from the perspective of morphology effect, including zero-dimensional nanomaterials, one-dimensional nanomaterials, and two-dimensional nanomaterials. Part 3 discusses applications in electrocatalysis, heterogeneous catalysis, plasmonics and sensing. Comprehensive reference for an important multidisciplinary research field Thoroughly summarizes the present state and latest developments in bimetallic structures Helps researchers find optimal synthetic methods and explore new phenomena in surface science and synthetic chemistry of bimetallic nanostructures Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics and Sensing Applications is an excellent source or reference for researchers and advanced students. Academic researchers in nanoscience, nanocatalysis, and surface plasmonics, and those working in industry in areas involving nanotechnology, catalysis and optoelectronics, will find this book of interest.

Book Noble Metal Metal Oxide Hybrid Nanoparticles

Download or read book Noble Metal Metal Oxide Hybrid Nanoparticles written by Satyabrata Mohapatra and published by Elsevier. This book was released on 2018-10-11 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications sets out concepts and emerging applications of hybrid nanoparticles in biomedicine, antibacterial, energy storage and electronics. The hybridization of noble metals (Gold, Silver, Palladium and Platinum) with metal-oxide nanoparticles exhibits superior features when compared to individual nanoparticles. In some cases, metal oxides act as semiconductors, such as nano zinc oxide or titanium oxide nanoparticles, where their hybridization with silver nanoparticles, enhanced significantly their photocatalytic efficiency. The book highlights how such nanomaterials are used for practical applications. - Examines the properties of metal-metal oxide hybrid nanoparticles that make them so adaptable - Explores the mechanisms by which nanoparticles interact with each other, showing how these can be exploited for practical applications - Shows how metal oxide hybrid nanomaterials are used in a range of industry sectors, including energy, the environment and healthcare

Book Plasmonic Metal Nanostructures

Download or read book Plasmonic Metal Nanostructures written by Caixia Kan and published by John Wiley & Sons. This book was released on 2024-02-20 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Firsthand insights on a unique class of optoelectronic materials, covering technologies and applications in catalysis, sensing, and spectroscopy Plasmonic Metal Nanostructures provides broad coverage of the field of plasmonic technologies, from fundamentals to real-world applications such as highly sensitive spectroscopy and surface analysis techniques, summarizing the recent progress in plasmonics and their applications, with a focus on comprehensive and authoritative discussions of fabrication and characterization of the materials and their technological uses. The text also addresses current trends and advances in materials for plasmonics, such as nanostructures with novel shapes, composite nanostructures, and thin films. Starting with an overview of optical properties in materials from macro- to micro- and nanoscale, the text then moves on to discuss the fundamentals and dielectric modifications and advanced characterization methods of plasmonic nanostructures. Next, the latest development of metal nanostructures, such as core-shell and porous nanorods, nanowires for conductive films, new star-like nanoplates, different open nanostructures, and metal-semiconductor composite nanostructures, are explained in detail. The final portion of the text discusses applications of plasmonics for semiconductor optoelectronic devices, catalysis, sensing, SERS (surface-enhanced Raman Spectroscopy), and energy. Written by a highly qualified academic, Plasmonic Metal Nanostructures covers sample topics such as: Drude model for free electron gas, dielectric function of the free electron gas, surface plasmon polaritons, plasmon at metal-vacuum interface, and surface plasmon effects Drude-Lorentz model of metal nanoparticles, dielectric properties of complex nanostructures, optical property analysis of isolated nanoparticles, and numerical simulation of optical properties One-dimensional Au nanostructures, core-shell nanostructures, alloy Au/Ag nanorods, porous nanorods, and yolk-shell nanostructures FCC nanoplates, Au nanoplates with novel and well-defined shapes, metal decorated semiconductors, and optical properties of Au NBP-embedded nanostructures Providing complete coverage of plasmonic nanostructures and their applications in catalysis, sensing, spectroscopy, thin-film, analysis, optoelectronics, and a variety of other fields. The book about Plasmonic Metal Nanostructures is an essential resource for materials scientists, physics researchers and photochemists, along with catalytic, biomedical, and physical chemists.