EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Switchgrass

    Book Details:
  • Author : Andrea Monti
  • Publisher : Springer Science & Business Media
  • Release : 2012-03-14
  • ISBN : 1447129024
  • Pages : 214 pages

Download or read book Switchgrass written by Andrea Monti and published by Springer Science & Business Media. This book was released on 2012-03-14 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The demand for renewable energies from biomass is growing steadily as policies are enacted to encourage such development and as industry increasingly sees an opportunity to develop bio-energy enterprises. Recent policy changes in the EU, USA and other countries are spurring interest in the cultivation of energy crops such as switchgrass. Switchgrass has gained and early lead in the race to find a biomass feedstock for energy production (and for the almost requisite need for bio-based products from such feedstocks). Switchgrass: A Valuable Biomass Crop for Energy provides a comprehensive guide to the biology, physiology, breeding, culture and conversion of switchgrass as well as highlighting various environmental, economic and social benefits. Considering this potential energy source, Switchgrass: A Valuable Biomass Crop for Energy brings together chapters from a range of experts in the field, including a foreword from Kenneth P. Vogel, to collect and present the environmental benefits and characteristics of this a crop with the potential to mitigate the risks of global warming by replacing fossil fuels. Including clear figures and tables to support discussions, Switchgrass: A Valuable Biomass Crop for Energy provides a solid reference for anyone with interest or investment in the development of bioenergy; researchers, policy makers and stakeholders will find this a key resource.

Book Compendium of Bioenergy Plants

Download or read book Compendium of Bioenergy Plants written by Hong Luo and published by CRC Press. This book was released on 2014-03-14 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the most comprehensive reviews on the latest development of switchgrass research including the agronomy of the plant, the use of endophytes and mycorrhizae for biomass production, genetics and breeding of bioenergy related traits, molecular genetics and molecular breeding, genomics, transgenics, processing, bioconversion, biosyst

Book Genetic Modification of Switchgrass  Panicum Virgatum L   for Improvement of Plant Architecture  Biomass Productivity and Sugar Release Efficiency for Biofuel

Download or read book Genetic Modification of Switchgrass Panicum Virgatum L for Improvement of Plant Architecture Biomass Productivity and Sugar Release Efficiency for Biofuel written by Wegi Aberra Wuddineh and published by . This book was released on 2015 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Switchgrass (Panicum virgatum L.) is a leading candidate bioenergy crop for sustainable biofuel production. To ensure its economic viability, tremendous improvements in switchgrass biomass productivity and recalcitrance to enzymatic saccharification are needed. Genetic manipulation of lignin biosynthesis by targeting transcriptional regulators of higher level domains of lignin biosynthesis and other complex traits could alter several bioenergy-desirable traits at once. A three-pronged approach was made in the dissertation research to target one plant growth regulator and transcription factors to alter plant architecture a nd cell wall biosynthesis. Gibberellin (GA) catabolic enzymes, GA 2-oxidases (GA2oxs), were utilized to alternatively modify the lignin biosynthesis pathway as GA is known to play a role in plant lignification. Constitutive overexpression of switchgrass C20 [C20] GA2ox genes altered plant morphology and modified plant architecture by increasing the number of tillers. Moreover, transgenic plants exhibited reduced lignin especially in leaves accompanied by 15% increase in sugar release (glucose). The Knotted1 (PvKN1) TF, a putative repressor of lignin biosynthesis genes, was identified and evaluated for improving biomass characteristics of switchgrass for biofuel. Its ectopic overexpression in switchgrass altered the expression of genes in the lignin, cellulose and hemicellulose biosynthesis, and GA signalling pathways. Consequently, transgenic lines displayed altered growth phenotypes particularly at early stages of vegetative development and moderate changes in lignin content accompanied by improved sugar release by up to 16%. The APETALA2/ ethylene responsive factor (AP2/ERF) TFs are key putative targets for engineering plants not only so they can withstand adverse environmental factors but also confer modified cell wall characteristics. To facilitate this, a total of 207 switchgrass AP2/ERF TFs comprising 3 families (AP2, ERF and related to API3/VP (RAV)) were identified. Sequence analysis for conserved putative motifs and expression pattern analysis delimited key genes for manipulation of switchgrass. To that end, the PvERF001 TF gene was ectopically overexpressed resulting in improved biomass yield and sugar release efficiency. The transgenic plants and knowledge produced in this research will be used to create new lines of switchgrass with combined novel traits to address needs in biofuel production and sustainable plant cultivation to enable the development of the bioeconomy.

Book Establishment  Fertility and Harvest Management for Optimizing Switchgrass Yield and Quality as a Cellulosic Ethanol Feedstock in the Great Lakes Region

Download or read book Establishment Fertility and Harvest Management for Optimizing Switchgrass Yield and Quality as a Cellulosic Ethanol Feedstock in the Great Lakes Region written by Katherine Kelly Withers and published by . This book was released on 2010 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Greener Grass

    Book Details:
  • Author : Keomany Ker
  • Publisher :
  • Release : 2012
  • ISBN :
  • Pages : pages

Download or read book A Greener Grass written by Keomany Ker and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Switchgrass (SG, Panicum virgatum L.), a temperate perennial grass, was chosen by the US Department of Energy's Herbaceous Energy Crops Program as the 'model' bioenergy crop for further research in North America. Current research on SG for bioenergy feedstock production focuses on improving breeding selection, agronomy and crop physiology, energy potential, and its contribution to mitigating greenhouse gas emissions. However, there is a lack of knowledge regarding plant-microbe interactions with SG, how these associations play a role in its growth and productivity, and their function and potential role in agro-ecosystems. Moreover, as SG has been reported to produce high biomass yields with minimal to no synthetic nitrogen (N) fertilizer, this suggested to us that SG could be obtaining at least some of the N to meet its requirements from plant growth promoting rhizobacteria (PGPR) capable of biological N2-fixation (BNF). The objectives of this research were ...

Book Evaluating Different Switchgrass Cultivars and Compost Treatments for Biofuel Production of Switchgrass  Panicum Virgatum L

Download or read book Evaluating Different Switchgrass Cultivars and Compost Treatments for Biofuel Production of Switchgrass Panicum Virgatum L written by Jessica D. Baculis and published by . This book was released on 2013 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Renewable Fuel Standard

Download or read book Renewable Fuel Standard written by National Research Council and published by National Academies Press. This book was released on 2012-01-29 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the United States, we have come to depend on plentiful and inexpensive energy to support our economy and lifestyles. In recent years, many questions have been raised regarding the sustainability of our current pattern of high consumption of nonrenewable energy and its environmental consequences. Further, because the United States imports about 55 percent of the nation's consumption of crude oil, there are additional concerns about the security of supply. Hence, efforts are being made to find alternatives to our current pathway, including greater energy efficiency and use of energy sources that could lower greenhouse gas (GHG) emissions such as nuclear and renewable sources, including solar, wind, geothermal, and biofuels. The United States has a long history with biofuels and the nation is on a course charted to achieve a substantial increase in biofuels. Renewable Fuel Standard evaluates the economic and environmental consequences of increasing biofuels production as a result of Renewable Fuels Standard, as amended by EISA (RFS2). The report describes biofuels produced in 2010 and those projected to be produced and consumed by 2022, reviews model projections and other estimates of the relative impact on the prices of land, and discusses the potential environmental harm and benefits of biofuels production and the barriers to achieving the RFS2 consumption mandate. Policy makers, investors, leaders in the transportation sector, and others with concerns for the environment, economy, and energy security can rely on the recommendations provided in this report.

Book Developing Switchgrass as a Bioenergy Crop

Download or read book Developing Switchgrass as a Bioenergy Crop written by and published by . This book was released on 1998 with total page 35 pages. Available in PDF, EPUB and Kindle. Book excerpt: The utilization of energy crops produced on American farms as a source of renewable fuels is a concept with great relevance to current ecological and economic issues at both national and global scales. Development of a significant national capacity to utilize perennial forage crops, such as switchgrass (Panicum virgatum, L.) as biofuels could benefit our agricultural economy by providing an important new source of income for farmers. In addition energy production from perennial cropping systems, which are compatible with conventional fining practices, would help reduce degradation of agricultural soils, lower national dependence on foreign oil supplies, and reduce emissions of greenhouse gases and toxic pollutants to the atmosphere (McLaughlin 1998). Interestingly, on-farm energy production is a very old concept, extending back to 19th century America when both transpofiation and work on the farm were powered by approximately 27 million draft animals and fueled by 34 million hectares of grasslands (Vogel 1996). Today a new form of energy production is envisioned for some of this same acreage. The method of energy production is exactly the same - solar energy captured in photosynthesis, but the subsequent modes of energy conversion are vastly different, leading to the production of electricity, transportation fuels, and chemicals from the renewable feedstocks. While energy prices in the United States are among the cheapest in the world, the issues of high dependency on imported oil, the uncertainties of maintaining stable supplies of imported oil from finite reserves, and the environmental costs associated with mining, processing, and combusting fossil fuels have been important drivers in the search for cleaner burning fuels that can be produced and renewed from the landscape. At present biomass and bioenergy combine provide only about 4% of the total primary energy used in the U.S. (Overend 1997). By contrast, imported oil accounts for approximately 44% of the foreign trade deficit in the U.S. and about 45% of the total annual U.S. oil consumption of 34 quads (1 quad = 1015 Btu, Lynd et al. 1991). The 22 quads of oil consumed by transportation represents approximately 25% of all energy use in the US and excedes total oil imports to the US by about 50%. This oil has environmental and social costs, which go well beyond the purchase price of around $15 per barrel. Renewable energy from biomass has the potential to reduce dependency on fossil fhels, though not to totally replace them. Realizing this potential will require the simultaneous development of high yielding biomass production systems and bioconversion technologies that efficiently convert biomass energy into the forms of energy and chemicals usable by industry. The endpoint criterion for success is economic gain for both agricultural and industrial sectors at reduced environmental cost and reduced political risk. This paper reviews progress made in a program of research aimed at evaluating and developing a perennial forage crop, switchgrass as a regional bioenergy crop. We will highlight here aspects of research progress that most closely relate to the issues that will determine when and how extensively switchgrass is used in commercial bioenergy production.

Book Reproduction and Bioconfinement of MiR156 Transgenic Switchgrass  Panicum Virgatum L

Download or read book Reproduction and Bioconfinement of MiR156 Transgenic Switchgrass Panicum Virgatum L written by Chelsea Renai Johnson and published by . This book was released on 2017 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic engineering of switchgrass (Panicum virgatum L.), an emerging cellulosic bioenergy feedstock, has been performed to alter cell walls for improved biofuel conversion. However, gene flow from transgenic switchgrass presents regulatory issues that may prevent commercialization of the genetically engineered crop in the eastern United States. Depending on its expression level, microRNA156 (miR156) can reduce, delay or eliminate flowering, which may be useful to mitigate transgene flow. However, flowering transition is dependent upon both environmental and genetic cues. In this study of transgenic switchgrass, two low (T14 and T35) and two medium (T27 and T37) miR156 overexpressing 'Alamo' lines and nontransgenic control plants were used. A two-year field experiment was performed to compare flowering, reproduction, and biomass yield in eastern Tennessee, U.S.A. Growth chamber studies assessed temperature and photoperiod effects on flowering and reproduction across a simulated latitudinal cline. In the field, medium miR156 overexpression line T37 resulted in the best overall combination of bioconfinement and biomass production. Though line T37 did flower, not all plants produced panicles, and panicle production was delayed in both years. Line T37 also produced fewer panicles, with a 65.9% reduction in year one and 23.8% reduction in year two over controls. T37 panicles produced 70.6% less flowers than control panicles during the second field year with commensurate decreased seed yield: 1205 seeds per plant vs. 18,539 produced by each control. These results are notable given that line T37 produced equivalent vegetative aboveground biomass as controls. In latitudinal simulation growth chambers, elevated temperatures and decreased daylength promoted flowering of the miR156 transgenic switchgrass lines. As temperatures increased and day lengths decreased, more plants in lines T35, T37, and controls produced panicles. The simulated (Ecuador) tropical conditions were the only chambers in which three of the four transgenic lines flowered. These results suggest that miR156 overexpression levels found in transgenic line T37 can be useful for bioconfinement, and the plants can significantly reproduce in tropical conditions, which would enable plant breeding for line improvement. Furthermore, the study suggests additional ways that miR156 can be manipulated to improve both biomass production and bioconfinement.

Book Alternative Nitrogen for Subsequent Southern Switchgrass  Panicum Virgatum L   Production Using Cool season Legumes

Download or read book Alternative Nitrogen for Subsequent Southern Switchgrass Panicum Virgatum L Production Using Cool season Legumes written by Mitchell Blake Holmberg and published by . This book was released on 2014 with total page 61 pages. Available in PDF, EPUB and Kindle. Book excerpt: Switchgrass (Panicum virgatum L.) has become an important bioenergy crop. Warm, winter temperatures in the southeastern USA allow for fall establishment and winter growth of cool-season legumes that may provide nitrogen to the spring perenniating crop of switchgrass. Data indicates variation due to year and location, but hairy vetch plots provided a greater nitrogen percentage in the subsequent biomass production of switchgrass. In 2011, switchgrass fertilized with 56 kg ha−1 N was greater than the control and in 2012 it was greater than the 28 kg ha−1 N treatment. Variation around the means prevented clear separation among other treatments. The data also showed that hairy vetch had the greatest volunteer frequency and cover percentage throughout the year. Data from the Dairy Farm showed no differences in yields due to a lack of field management the previous years and only ball clover increased its coverage over time.

Book Assessing Best Management Practices for Improving Switchgrass Establishment and Production

Download or read book Assessing Best Management Practices for Improving Switchgrass Establishment and Production written by Amir Sadeghpour and published by . This book was released on 2014 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Switchgrass (Panicum virgatum L.) is a C4-grass indigenous to North America being considered as the "model" energy crop. Switchgrass is difficult to establish and first-year stand failure often challenge the large scale production of switchgrass. Reliable establishment methods and effective weed management practices to produce a harvestable biomass in the establishment year are required. Also, to maximize the economic viability of switchgrass production, appropriate nutrient management and harvests are needed. Thus, we conducted researches to improve switchgrass establishment and production. These studies ranged from finding the most promising switchgrass variety to adjusting switchgrass seeding rate, determine the most appropriate seeding date, seeding methods, weed management, nitrogen application, and harvest management. Currently Cave-in-Rock is a highly suggested upland variety for northern region of United States. Results of our variety trials both at establishment and production level indicated that Carthage and Shawnee could also be considered as promising varieties in northern regions of United States. In a four-year study, Carthage consistently produced higher biomass yield compared with other varieties. A vigor test trial was suggested for adjusting switchgrass seeding rate and we found significant differences between the required seeding rate for producing acceptable first-year biomass in fertile soils and marginal soils. While approximately 7 kg ha-1 seeding rate might be sufficient for fertile soils, 14 kg ha-1 might be required to produce enough established seedling for the same biomass production in a marginal soil. An early planting of switchgrass was not as effective as a late planting in weed suppression but plants were more advanced morphologically thus, produced acceptable biomass yield with root system which ensures successful second-year production. Among cover crops, oat outperformed others (Fallow and Rye) with both suppressing weeds and improving switchgrass establishment. Results suggested drastic differences between no-till planting and seeding with cultipacker seeder where no-till planting into oat produced significantly higher biomass yield compared with cultipacker seeder. A firm seedbed is also another desirable method of planting where significantly improved switchgrass establishment and production was observed with 2 times rolling/cultipacking after seeding. Our findings indicated that application of herbicides is strongly required in the establishment year where a Broad Spectrum application of atrazine, quinclorac, 2,4-D, and dicamba improved switchgrass establishment through effective control of weeds. We found a late-fall harvest could improve switchgrass quality for combustion (less moisture, ash, and nutrient content) without yield reduction for many years. When switchgrass was harvested in late-fall, no response to N application was found. Overall, it is proposed that a no-till planting of switchgrass into oat cover crop with herbicide application planted in early-June could provide a successful stand and later, a late-fall harvest without any N application could maintain crop productivity with acceptable biomass yield and quality for several years.

Book The Establishment of Switchgrass  Panicum Virgatum L   for Bioenergy in the Upper Midwest

Download or read book The Establishment of Switchgrass Panicum Virgatum L for Bioenergy in the Upper Midwest written by Ariel A. D. Larson and published by . This book was released on 2013 with total page 78 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Assessing Gene Flow in Switchgrass  Panicum Virgatum  and Miscanthus Spp

Download or read book Assessing Gene Flow in Switchgrass Panicum Virgatum and Miscanthus Spp written by Hsiaochi Chang and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Planting of semi-domesticated grasses for habitat restoration and bioenergy has raised concerns about potential ecological consequences, for instance, genetic swamping of wild populations through crop-to-wild gene flow, and introgression of crop traits into wild relatives resulting in more invasive wild populations. In this dissertation, I explored different aspects of gene flow in two popular bioenergy candidates --switchgrass (Panicum virgatum) and Miscanthus (Miscanthus spp.) -- and aimed to provide necessary information to mitigate potential gene flow from new switchgrass and Miscanthus cultivars. Switchgrass cultivars have been planted in Conservation Reserve Program (CRP) areas when wild seed sources are limited. However, the close proximity of CRP areas and remnant prairies may have allowed rapid crop-to-wild gene flow. In the first chapter, I investigated ploidy levels, genetic diversity, and genetic structure of seventeen prairie and sixteen CRP populations in eastern Kansas, along with five standard cultivars. The results suggested that the prairie and CRP populations were genetically similar, and the CRP populations were mainly established using local prairie seeds rather than cultivars. In addition, the prairie populations still harbor unique alleles that are of conservation value.

Book Evaluation of Swicthgrass  Panicum Virgatum L   as a Bioenergy Feedstock for the Northeastern and Mid Atlantic USA

Download or read book Evaluation of Swicthgrass Panicum Virgatum L as a Bioenergy Feedstock for the Northeastern and Mid Atlantic USA written by Laura Mary Cortese and published by . This book was released on 2014 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: Switchgrass (Panicum virgatum L.) is a warm season, C4 perennial grass native to most of North America with numerous applications, including use as a bioenergy feedstock. Although switchgrass has emerged as a bioenergy crop throughout the midwestern and southern US, little information is available on the performance of switchgrass in the Northeast/Mid-Atlantic. In the first genetic diversity study of switchgrass populations to utilize both morphological and molecular markers, it was found that the combination of morphological and molecular markers differentiated populations best, and should be useful in future applications such as genetic diversity studies, plant variety protection, and cultivar identification. In a study that evaluated several bioenergy traits of 10 switchgrass cultivars in NJ, populations with improved agronomic characteristics were identified. Cultivar Timber exhibited the best combination of characteristics and has promise for biomass production in the Northeast/Mid-Atlantic US. In a third study, the effects of cultivar, location, and harvest date on biomass yield, dry matter, ash, and combustion energy content in three switchgrass cultivars were investigated. Results indicated that a January harvest allowed for optimal feedstock quality and that cultivars Alamo, Carthage, and Timber produced high yielding, high quality biomass. In an effort to improve the establishment capacity of switchgrass, a fourth study was conducted examining the effects of divergent selection for seed weight on germination and emergence in three switchgrass populations over two cycles of selection, and cold stratification on germination in the derived populations. Selection for seed weight alone was not sufficient to improve germination and germination rate in populations tested, while cold stratification improved germination. Therefore, breeding efforts should be directed towards reducing dormancy in order to improve switchgrass germination and establishment. The final two studies examined genotype x environment effects, estimated broad-sense heritability, and stability analysis on lignocellulosic and agronomic traits in switchgrass clones grown on marginal and prime soils in NJ. Results support the existence of both specifically and broadly adapted switchgrass germplasm, and demonstrate the need for evaluation of germplasm across multiple years and environments (including prime and marginal sites) in order to develop cultivars with optimal lignocellulosic and agronomic characteristics.

Book Switchgrass Cultivar and Intraspecific Diversity Impacts on Nitrogen Use Efficiency

Download or read book Switchgrass Cultivar and Intraspecific Diversity Impacts on Nitrogen Use Efficiency written by Aislinn Johns and published by . This book was released on 2016 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Bioenergy feedstock production is an important component of the national renewable energy strategy, which is based on biomass supply. Biofuels for ethanol production may be produced in high-input crop production systems, but the efficacy of these systems for increasing net energy yields over its full life-cycle compared to traditional fuels is under debate, because it is now evident that the benefits of feedstock production are maximized only when biofuels are derived from feedstocks produced with much lower life-cycle greenhouse-gas emissions than traditional fossil fuels. To this end, the reduction of agricultural inputs is key to developing an effective biofuel feedstock crop. Native prairie grasses have low-input production requirements, and upon land conversion for biofuel production they have positive impacts on belowground carbon (C) sequestration, a measure of soil quality. Specifically, Panicum virgatum (hereafter switchgrass), a perennial C4 grass native to the mid-west of the United States, is a promising bioenergy crop. It has large root systems, which allow it to produce large amounts of biomass with less water and nutrient requirements than traditional bioenergy crops, such as corn. To produce switchgrass feedstock in an environmentally sustainably manner (i.e., with the least amount of fertilizer inputs), we will need to adopt agricultural practices that promote N cycling efficiency in the system. Previous studies have found that different cultivars of switchgrass vary significantly in specific root length (SRL), and greater SRL may be linked to greater N acquisition owing to the root systems' greater surface area. In addition, it has been found that growing switchgrass in genotypically diverse mixtures enhanced biomass production, which may result from belowground niche differentiation and complementarity effects that enhance N acquisition. With this study, I aimed to evaluate (1) whether differences in the architecture among root systems of switchgrass cultivars led to differences in the efficiency of nitrogen uptake, and (2) whether growing switchgrass cultivars in diverse mixtures would enhance the efficiency of nitrogen cycling though niche differentiation and complementarity effects. Our experiment was conducted at the Sustainable Bioenergy Crop Research Facility at the Fermilab National Environmental Research Park, where experimental field plots consisted of seven switchgrass cultivars, planted either in monoculture or in diverse mixtures of 2, 4, or 6 randomly selected cultivars. To evaluate differences in nitrogen use efficiency (NUE) among cultivars in monocultures and among diversity treatments, I applied a stable isotope 15N tracer at the beginning of the growing season. Following senescence, the switchgrass was harvested and the percent of 15N recovered was measured in the aboveground biomass to determine NUE. I found that switchgrass cultivars differed in NUE and these differences could potentially be linked to germplasm origin in relation to the field site. I also found that NUE was not influenced by increases in cultivar diversity. Our results suggest that NUE is not the sole mechanism behind greater biomass production associated with enhanced diversity."--Boise State University ScholarWorks.

Book Switchgrass  Panicum Virgatum

Download or read book Switchgrass Panicum Virgatum written by Clinton H. Wasser and published by . This book was released on 1986 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: A plant materials report on witchgrass (Panicum virgatum) is provided as Section 7.1.2 of the US Army Corps of Engineers Wildlilfe Resources Management Manual. The report was prepared as guide to assist the Corps District or project biologist with the selection, cultivation, and management of suitable plant materials for wildlife and habitat development programs. Topics covered include description, distribution, habitat requirements, wildlife value, establishment, maintenance, and cautions and limitations. Switchgrass is a native, perennial, warm-season bunchgrass and is a major component of the Midwestern tallgrass prairie. The seeds, foliage, and stiff upright stems provide food and cover for a variety of wildlife species. Distinguishing characteristics of switchgrass are describedl and the species distribution and region of maximum abundance are given. Soil, moisture, and shade requirements are specified, and common plant associates in tallgrass prairies are listed. Food and cover value for several species of wildlife is discussed. The section on establishment provides guidelines for site selection, site preparation, propagule selection, and planting methods. Recommended planting mixtures are given for several regions. Maintenance requirements and cautions and limitations are discussed.