EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Plant Genetics and Biotechnology in Biodiversity

Download or read book Plant Genetics and Biotechnology in Biodiversity written by Rosa Rao and published by MDPI. This book was released on 2018-08-09 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Plant Genetics and Biotechnology in Biodiversity" that was published in Diversity

Book Plant Genetics and Biotechnology in Biodiversity

Download or read book Plant Genetics and Biotechnology in Biodiversity written by Rosa Rao and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Plant Genetics and Biotechnology in Biodiversity

Download or read book Plant Genetics and Biotechnology in Biodiversity written by Rosa Rao and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Plant Genetics and Biotechnology in Biodiversity.

Book Plant Biology and Biotechnology

Download or read book Plant Biology and Biotechnology written by Bir Bahadur and published by Springer. This book was released on 2015-06-19 with total page 780 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plant genomics and biotechnology have recently made enormous strides, and hold the potential to benefit agriculture, the environment and various other dimensions of the human endeavor. It is no exaggeration to claim that the twenty-first century belongs to biotechnology. Knowledge generation in this field is growing at a frenetic pace, and keeping abreast of the latest advances and calls on us to double our efforts. Volume II of this two-part series addresses cutting-edge aspects of plant genomics and biotechnology. It includes 37 chapters contributed by over 70 researchers, each of which is an expert in his/her own field of research. Biotechnology has helped to solve many conundrums of plant life that had long remained a mystery to mankind. This volume opens with an exhaustive chapter on the role played by thale cress, Arabidopsis thaliana, which is believed to be the Drosophila of the plant kingdom and an invaluable model plant for understanding basic concepts in plant biology. This is followed by chapters on bioremediation, biofuels and biofertilizers through microalgal manipulation, making it a commercializable prospect; discerning finer details of biotic stress with plant-fungal interactions; and the dynamics of abiotic and biotic stresses, which also figure elsewhere in the book. Breeding crop plants for desirable traits has long been an endeavor of biotechnologists. The significance of molecular markers, marker assisted selection and techniques are covered in a dedicated chapter, as are comprehensive reviews on plant molecular biology, DNA fingerprinting techniques, genomic structure and functional genomics. A chapter dedicated to organellar genomes provides extensive information on this important aspect. Elsewhere in the book, the newly emerging area of epigenetics is presented as seen through the lens of biotechnology, showcasing the pivotal role of DNA methylation in effecting permanent and transient changes to the genome. Exclusive chapters deal with bioinformatics and systems biology. Handy tools for practical applications such as somatic embryogenesis and micropropagation are included to provide frontline information to entrepreneurs, as is a chapter on somaclonal variation. Overcoming barriers to sexual incompatibility has also long been a focus of biotechnology, and is addressed in chapters on wide hybridization and hybrid embryo rescue. Another area of accomplishing triploids through endosperm culture is included as a non-conventional breeding strategy. Secondary metabolite production through tissue cultures, which is of importance to industrial scientists, is also covered. Worldwide exchange of plant genetic material is currently an essential topic, as is conserving natural resources in situ. Chapters on in vitro conservation of extant, threatened and other valuable germplasms, gene banking and related issues are included, along with an extensive account of the biotechnology of spices – the low-volume, high-value crops. Metabolic engineering is another emerging field that provides commercial opportunities. As is well known, there is widespread concern over genetically modified crops among the public. GM crops are covered, as are genetic engineering strategies for combating biotic and abiotic stresses where no other solutions are in sight. RNAi- and micro RNA- based strategies for crop improvement have proved to offer novel alternatives to the existing non-conventional techniques, and detailed information on these aspects is also included. The book’s last five chapters are devoted to presenting the various aspects of environmental, marine, desert and rural biotechnology. The state-of-the-art coverage on a wide range of plant genomics and biotechnology topics will be of great interest to post-graduate students and researchers, including the employees of seed and biotechnology companies, and to instructors in the fields of plant genetics, breeding and biotechnology.

Book Biotechnology and Plant Breeding

Download or read book Biotechnology and Plant Breeding written by Aluízio Borém and published by Elsevier. This book was released on 2014-01-21 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biotechnology and Plant Breeding includes critical discussions of the newest and most important applications of biotechnology in plant breeding, covering key topics such as biometry applied to molecular analysis of genetic diversity, genetically modified plants, and more. This work goes beyond recombinant DNA technology to bring together key information and references on new biotech tools for cultivar development, such as double-haploids, molecular markers, and genome-wide selection, among others. It is increasingly challenging for plant breeders and agricultural systems to supply enough food, feed, fiber and biofuel for the global population. As plant breeding evolves and becomes increasingly sophisticated, a staggering volume of genetic data is now generated. Biotechnology and Plant Breeding helps researchers and students become familiar with how the vast amounts of genetic data are generated, stored, analyzed and applied. This practical resource integrates information about plant breeding into the context of modern science, and assists with training for plant breeders including those scientists who have a good understanding of molecular biology/biotechnology and need to learn the art and practice of plant breeding. Plant biologists, breeding technicians, agronomists, seed technologists, students, and any researcher interested in biotechnologies applied to plant breeding will find this work an essential tool and reference for the field. - Presents in-depth but easy-to-understand coverage of topics, so plant breeders can readily comprehend them and apply them to their breeding programs - Includes chapters that address the already developed and optimized biotechnologies for cultivar development, with real-world application for users - Features contributions by authors with several years of experience in their areas of expertise

Book Agricultural Biotechnology  Biodiversity and Bioresources Conservation and Utilization

Download or read book Agricultural Biotechnology Biodiversity and Bioresources Conservation and Utilization written by Olawole O. Obembe and published by CRC Press. This book was released on 2022-05-10 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a range of important topics on crop and animal genetics, breeding and genomics, as well as biodiversity and genetic resources conservation and utilization reflecting three thematic sections of working groups of the Biotechnology Society of Nigeria. The topics range from agricultural biotechnology, including genetically modified organisms and gene-editing for agronomically important traits in tropical crops, to Nigeria’s mega biodiversity and genetic resources conservation. This book will engender a deeper understanding of underpinning mechanisms, technologies, processes and science–policy nexus that has placed Nigeria as a leader in biotechnology in Africa. The book will be useful reference material for scientists and researchers working in the fields of food and agricultural biotechnology, bioinformatics, plant and animal genetics, breeding and genomics, genetic resources conservation and enhancement. Emphasizes recent advances in biotechnologies that could ameliorate the high-level global food and nutrition insecurity through plant and animal genetics, breeding, as well as genomics Provides detailed information towards harnessing indigenous bioresources for food and nutrition security and climate change adaptation Introduces new frontiers in the area of genomics, most especially their relevant applications in crop and animal breeding Reviews biotechniques that could enhance plant genetic resources conservation and utilization Discusses current biotechnological approaches to exploit genetic resources including the development of synthetic hexaploid wheat (SHW) for crop adaptation to the increasingly changing global climate

Book Biotechnology and Biodiversity

Download or read book Biotechnology and Biodiversity written by M. R. Ahuja and published by Springer. This book was released on 2014-10-13 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to assess the potential effects of biotechnological approaches particularly genetic modification on biodiversity and the environment. All aspects of biodiversity such as ecological diversity, species diversity and genetic diversity are considered. Higher organisms contain a specific set of linear DNA molecules called chromosomes and a complete set of chromosomes in an organism comprises its genome. The collection of traits displayed by any organism (phenotype) depends on the genes present in its genome (genotype). The appearance of any specific trait also will depend on many other factors, including whether the gene(s) responsible for the trait is/are turned on (expressed) or off, the specific cells within which the genes are expressed and how the genes, their expression and the gene products interact with environmental factors. The primary biotechnology which concerns us is that of genetic manipulation, which has a direct impact on biodiversity at the genetic level. By these manipulations, novel genes or gene fragments can be introduced into organisms (creating transgenics) or existing genes within an organism can be altered. Transgenics are a major area of concern, combining genes from different species to effectively create novel organisms. Current rates of disappearance of biological and cultural diversity in the world are unprecedented. Intensive resource exploitation due to social and economic factors has led to the destruction, conversion or degradation of ecosystems. Reversing these trends requires time to time assessment to integrate conservation and development.

Book Biotechnology and Plant Genetic Resources

Download or read book Biotechnology and Plant Genetic Resources written by J. A. Callow and published by Cabi. This book was released on 1997 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in molecular and cell biology have led to the development of a whole range of techniques for manipulating genomes, collectively termed "biotechnology". Although much of the focus in the plant sciences has been on the direct manipulation of plant genomes, biotechnology has also catalyzed a renewed emphasis on the importance of biological and genetic diversity and its conservation. The methods of biotechnology now permit a greater understanding of both species and genetic diversity in plants, the mechanisms by which that variation is generated in nature, and the significance of that variation in the adaptation of plants to their environment. They allow the development of rapid methods for screening germplasm for specific characters and promote more effective conservation strategies by defining the extent of genetic diversity. Tissue culture-based techniques are available for conserving germplasm that cannot be maintained by more traditional methods. Also sophisticated informatics systems enable information on plant genetics and molecular biology to be cross-related to systematic, ecological and other data through international networks.

Book Plant Biotechnology and Plant Genetic Resources for Sustainability and Productivity

Download or read book Plant Biotechnology and Plant Genetic Resources for Sustainability and Productivity written by Kazuo N. Watanabe and published by Elsevier. This book was released on 1997-07-21 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Plant Biotechnology And Plant Genetic Resources, which boasts a truly international list of contributors with a variety of expertise, thoroughly explores all the major contemporary concerns. It discusses the strategies for the best use of modern biotechnology and precious plant genetic resources to alleviate components associated with global constraints in hunger, environment and health. This book is a valuable resource for scientists and policy makers as the world faces unprecedented challenges in the sustainability and productivity of the global food and fibre system.

Book Genetic Diversity and Erosion in Plants

Download or read book Genetic Diversity and Erosion in Plants written by M. R. Ahuja and published by Springer. This book was released on 2015-11-06 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic erosion is the loss of genetic diversity within a species. It can happen very quickly, due to catastrophic events, or changes in land use leading to habitat loss. But it can also occur more gradually and remain unnoticed for a long time. One of the main causes of genetic erosion is the replacement of local varieties by modern varieties. Other causes include environmental degradation, urbanization, and land clearing through deforestation and brush fires. In order to conserve biodiversity in plants, it is important to targets three independent levels that include ecosystems, species and genes. Genetic diversity is important to a species’ fitness, long-term viability, and ability to adapt to changing environmental conditions. Chapters in this book are written by leading geneticists, molecular biologists and other specialists on relevant topics on genetic erosion and conservation genetic diversity in plants. This divisible set of two volumes deals with a broad spectrum of topics on genetic erosion, and approaches to biodiversity conservation in crop plants and trees. Volume 1 deals with indicators and prevention of genetic erosion, while volume 2 covers genetic diversity and erosion in a number of plants species. These two volumes will also be useful to botanists, biotechnologists, environmentalists, policy makers, conservationists, and NGOs working to manage genetic erosion and biodiversity.

Book Plant Biotechnology and Genetics

Download or read book Plant Biotechnology and Genetics written by C. Neal Stewart, Jr. and published by John Wiley & Sons. This book was released on 2016-03-21 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focused on basics and processes, this textbook teaches plant biology and agriculture applications with summary and discussion questions in each chapter. Updates each chapter to reflect advances / changes since the first edition, for example: new biotechnology tools and advances, genomics and systems biology, intellectual property issues on DNA and patents, discussion of synthetic biology tools Features autobiographical essays from eminent scientists, providing insight into plant biotechnology and careers Has a companion website with color images from the book and PowerPoint slides Links with author's own website that contains teaching slides and graphics for professors and students: http://bit.ly/2CI3mjp

Book Plant Genetics and Molecular Biology

Download or read book Plant Genetics and Molecular Biology written by Rajeev K. Varshney and published by Springer. This book was released on 2018-09-04 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the latest advances in multiple fields of plant biotechnology and the opportunities that plant genetics, genomics and molecular biology have offered for agriculture improvement. Advanced technologies can dramatically enhance our capacity in understanding the molecular basis of traits and utilizing the available resources for accelerated development of high yielding, nutritious, input-use efficient and climate-smart crop varieties. In this book, readers will discover the significant advances in plant genetics, structural and functional genomics, trait and gene discovery, transcriptomics, proteomics, metabolomics, epigenomics, nanotechnology and analytical & decision support tools in breeding. This book appeals to researchers, academics and other stakeholders of global agriculture.

Book Genetic Diversity in Horticultural Plants

Download or read book Genetic Diversity in Horticultural Plants written by Dilip Nandwani and published by Springer Nature. This book was released on 2019-10-17 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book in the series “Sustainable Development and Biodiversity” contains peer-reviewed chapters from leading academicians and researchers around the world in the field of horticulture, plant taxonomy, plant biotechnology, genetics and related areas of biodiversity science centered on genetic diversity. This book includes original research reviews (national, regional and global) and case studies in genetic diversity in fruits and vegetables, horticulture, and ecology from sub-tropical and tropical regions. It is unique as it covers a wide array of topics covering global interests and will constitute valuable reference material for students, researchers, extension specialists, farmers and certification agencies who are concerned with biodiversity, ecology and sustainable development.

Book Plant Biology and Biotechnology

Download or read book Plant Biology and Biotechnology written by Bir Bahadur and published by Springer. This book was released on 2015-07-02 with total page 827 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers a much-needed compilation of essential reviews on diverse aspects of plant biology, written by eminent botanists. These reviews effectively cover a wide range of aspects of plant biology that have contemporary relevance. At the same time they integrate classical morphology with molecular biology, physiology with pattern formation, growth with genomics, development with morphogenesis, and classical crop-improvement techniques with modern breeding methodologies. Classical botany has been transformed into cutting-edge plant biology, thus providing the theoretical basis for plant biotechnology. It goes without saying that biotechnology has emerged as a powerful discipline of Biology in the last three decades. Biotechnological tools, techniques and information, used in combination with appropriate planning and execution, have already contributed significantly to economic growth and development. It is estimated that in the next decade or two, products and processes made possible by biotechnology will account for over 60% of worldwide commerce and output. There is, therefore, a need to arrive at a general understanding and common approach to issues related to the nature, possession, conservation and use of biodiversity, as it provides the raw material for biotechnology. More than 90% of the total requirements for the biotechnology industry are contributed by plants and microbes, in terms of goods and services. There are however substantial plant and microbial resources that are waiting for biotechnological exploitation in the near future through effective bioprospection. In order to exploit plants and microbes for their useful products and processes, we need to first understand their basic structure, organization, growth and development, cellular process and overall biology. We also need to identify and develop strategies to improve the productivity of plants. In view of the above, in this two-volume book on plant biology and biotechnology, the first volume is devoted to various aspects of plant biology and crop improvement. It includes 33 chapters contributed by 50 researchers, each of which is an expert in his/her own field of research. The book begins with an introductory chapter that gives a lucid account on the past, present and future of plant biology, thereby providing a perfect historical foundation for the chapters that follow. Four chapters are devoted to details on the structural and developmental aspects of the structures of plants and their principal organs. These chapters provide the molecular biological basis for the regulation of morphogenesis of the form of plants and their organs, involving control at the cellular and tissue levels. Details on biodiversity, the basic raw material for biotechnology, are discussed in a separate chapter, in which emphasis is placed on the genetic, species and ecosystem diversities and their conservation. Since fungi and other microbes form an important component of the overall biodiversity, special attention is paid to the treatment of fungi and other microbes in this volume. Four chapters respectively deal with an overview of fungi, arbuscularmycorrhizae and their relation to the sustenance of plant wealth, diversity and practical applications of mushrooms, and lichens (associated with a photobiont). Microbial endosymbionts associated with plants and phosphate solubilizing microbes in the rhizosphere of plants are exhaustively treated in two separate chapters. The reproductive strategies of bryophytes and an overview on Cycads form the subject matter of another two chapters, thus fulfilling the need to deal with the non-flowering Embryophyte group of plants. Angiosperms, the most important group of plants from a biotechnological perspective, are examined exhaustively in this volume. The chapters on angiosperms provide an overview and cover the genetic basis of flowers development, pre-and post-fertilization reproductive growth and development, seed biology and technology, plant secondary metabolism, photosynthesis, and plant volatile chemicals. A special effort has been made to include important topics on crop improvement in this volume. The importance of pollination services, apomixes, male sterility, induced mutations, polyploidy and climate changes is discussed, each in a separate chapter. Microalgalnutra-pharmaceuticals, vegetable-oil-based nutraceuticals and the importance of alien crop resources and underutilized crops for food and nutritional security form the topics of three other chapters in this volume. There is also a special chapter on the applications of remote sensing in the plant sciences, which also provides information on biodiversity distribution. The editors of this volume believe the wide range of basic topics on plant biology that have great relevance in biotechnology covered will be of great interest to students, researchers and teachers of botany and plant biotechnology alike.

Book Plant Biology and Biotechnology

Download or read book Plant Biology and Biotechnology written by Bir Bahadur and published by Springer. This book was released on 2016-10-23 with total page 827 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers a much-needed compilation of essential reviews on diverse aspects of plant biology, written by eminent botanists. These reviews effectively cover a wide range of aspects of plant biology that have contemporary relevance. At the same time they integrate classical morphology with molecular biology, physiology with pattern formation, growth with genomics, development with morphogenesis, and classical crop-improvement techniques with modern breeding methodologies. Classical botany has been transformed into cutting-edge plant biology, thus providing the theoretical basis for plant biotechnology. It goes without saying that biotechnology has emerged as a powerful discipline of Biology in the last three decades. Biotechnological tools, techniques and information, used in combination with appropriate planning and execution, have already contributed significantly to economic growth and development. It is estimated that in the next decade or two, products and processes made possible by biotechnology will account for over 60% of worldwide commerce and output. There is, therefore, a need to arrive at a general understanding and common approach to issues related to the nature, possession, conservation and use of biodiversity, as it provides the raw material for biotechnology. More than 90% of the total requirements for the biotechnology industry are contributed by plants and microbes, in terms of goods and services. There are however substantial plant and microbial resources that are waiting for biotechnological exploitation in the near future through effective bioprospection. In order to exploit plants and microbes for their useful products and processes, we need to first understand their basic structure, organization, growth and development, cellular process and overall biology. We also need to identify and develop strategies to improve the productivity of plants. In view of the above, in this two-volume book on plant biology and biotechnology, the first volume is devoted to various aspects of plant biology and crop improvement. It includes 33 chapters contributed by 50 researchers, each of which is an expert in his/her own field of research. The book begins with an introductory chapter that gives a lucid account on the past, present and future of plant biology, thereby providing a perfect historical foundation for the chapters that follow. Four chapters are devoted to details on the structural and developmental aspects of the structures of plants and their principal organs. These chapters provide the molecular biological basis for the regulation of morphogenesis of the form of plants and their organs, involving control at the cellular and tissue levels. Details on biodiversity, the basic raw material for biotechnology, are discussed in a separate chapter, in which emphasis is placed on the genetic, species and ecosystem diversities and their conservation. Since fungi and other microbes form an important component of the overall biodiversity, special attention is paid to the treatment of fungi and other microbes in this volume. Four chapters respectively deal with an overview of fungi, arbuscularmycorrhizae and their relation to the sustenance of plant wealth, diversity and practical applications of mushrooms, and lichens (associated with a photobiont). Microbial endosymbionts associated with plants and phosphate solubilizing microbes in the rhizosphere of plants are exhaustively treated in two separate chapters. The reproductive strategies of bryophytes and an overview on Cycads form the subject matter of another two chapters, thus fulfilling the need to deal with the non-flowering Embryophyte group of plants. Angiosperms, the most important group of plants from a biotechnological perspective, are examined exhaustively in this volume. The chapters on angiosperms provide an overview and cover the genetic basis of flowers development, pre-and post-fertilization reproductive growth and development, seed biology and technology, plant secondary metabolism, photosynthesis, and plant volatile chemicals. A special effort has been made to include important topics on crop improvement in this volume. The importance of pollination services, apomixes, male sterility, induced mutations, polyploidy and climate changes is discussed, each in a separate chapter. Microalgalnutra-pharmaceuticals, vegetable-oil-based nutraceuticals and the importance of alien crop resources and underutilized crops for food and nutritional security form the topics of three other chapters in this volume. There is also a special chapter on the applications of remote sensing in the plant sciences, which also provides information on biodiversity distribution. The editors of this volume believe the wide range of basic topics on plant biology that have great relevance in biotechnology covered will be of great interest to students, researchers and teachers of botany and plant biotechnology alike.

Book Gene Pool Diversity and Crop Improvement

Download or read book Gene Pool Diversity and Crop Improvement written by Vijay Rani Rajpal and published by Springer. This book was released on 2016-02-02 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world population is estimated to reach to more than 10 billion by the year 2050. These projections pose a challenging situation for the agricultural scientists to increase crops productivity to meet the growing food demands. The unavailability and/or inaccessibility to appropriate gene pools with desired traits required to carry out genetic improvement of various crop species make this task formidable for the plant breeders. Incidentally, most of the desired genes reside in the wild genetic relatives of the crop species. Therefore, exploration and characterization of wild genetic resources of important crop species is vital for the efficient utilization of these gene pools for sustainable genetic improvements to assure food security. Further, understanding the myriad complexities of genic and genomic interactions among species, more particularly of wild relatives of crop species and/or phylogenetically distant germplasm, can provide the necessary inputs to increase the effectiveness of genetic improvement through traditional and/or genetic engineering methods. This book provides comprehensive and latest insights on the evolutionary genesis of diversity, access and its utilization in the evolution of various crop species. A comprehensive account of various crops, origin, exploitation of the primary, secondary and tertiary gene pools through breeding, biosystematical, cytogenetical and molecular phylogenetical relationships, and genetic enhancement through biotechnological interventions among others have been provided as the necessary underpinnings to consolidate information on the effective and sustainable utilization of the related genetic resources. The book stresses upon the importance of wild germplasm exploration, characterization and exploitation in the assimilation of important crop species. The book is especially intended for students and scientists working on the genetic improvement of crop species. Plant Breeders, Geneticists, Taxonomists, Molecular Biologists and Plant Biotechnologists working on crop species are going to find this book very useful.

Book Methods for Risk Assessment of Transgenic Plants

Download or read book Methods for Risk Assessment of Transgenic Plants written by Klaus Ammann and published by Springer. This book was released on 2012-12-06 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: For centuries, TK has been used almost exclusively by its creators, that is, indigenous and local communities. Access to, use of and handing down of TK has been regulated by local laws, customs and tmditions. Some TK has been freely accessible by all members of an indigenous or local community and has been freely exchanged with other communities; other TK has only been known to particular individuals within these communities such as shamans, and has been handed down only to particular individuals of thc next generation. Over many generations, indigenous and local communities have accumulated a great deal of TK which has generally been adapted, developed and improved by the generations that followed. For a long time, Western anthropologists and other scientists have generally been able to freely access TK and have documented it in their works. Still, this TK was only seldom used outside the indigenous and local communities that created it. More recently, however, Western scientists have become aware that TK is neither outdated nor valueless knowledge, but, instead, 1 can be useful to solve some of the problems facing today's world. Modem science, for example, has shown an increased interest in some fornls ofTK as knowledge that can be used in 4 research and development (R&D) activities and be integrated in modem innovations. This holds especially true for TK regarding genetic resources, which has been integrated in modem 6 phannaceuticals,s agro-chemicals and seed.