EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Pile Response to Liquefaction induced Lateral Spread

Download or read book Pile Response to Liquefaction induced Lateral Spread written by Wolfgang Daniel Meyersohn and published by . This book was released on 2005 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thesis Ph.D.)--Cornell University, 1994.

Book Liquefaction induced Lateral Spreading and Its Effects on Pile Foundations

Download or read book Liquefaction induced Lateral Spreading and Its Effects on Pile Foundations written by Liangcai He and published by . This book was released on 2005 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Single Response to Liquefaction induced Lateral Spreading

Download or read book Single Response to Liquefaction induced Lateral Spreading written by and published by . This book was released on 2005 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: A review of liquefaction-induced lateral spreading and its effects on pile foundations has been presented. A review of currently available methods of analysis for prediction of bending moments and deflections of a single pile subjected to lateral spreading has also been conducted. The methods included in this study are: (a) Deformation method, (b) Japanese Road Association (JRA) method, (c) Limit Equilibrium method, (d) Hybrid force-deformation imposed method, and (e) Finite element method. Numerical analyses were conducted on single piles subjected to lateral spreading, using ABAQUS, based on the first four methods indicated above. The numerical analyses involved three different soil-pile configurations: (a) a two-layer soil profile without a non-liquefiable soil crust, (b) a three-layer soil profile with a non-liquefiable soil crust underlain by liquefiable soil over a dense sand, and (c) a three-layer soil profile like that of case (b) with a lateral deformation constraint at the pile head. The results were compared with a limited number of centrifuge data on single piles. The purpose was to calibrate these methods and assess their ability to capture the measured moment and deflection responses of single piles. The limit equilibrium method and the deformation-imposed method predicted the centrifuge data very well. The JRA method overpredicted both moments and pile deflections by as much as four times. Based on deformation imposed method, parametric analyses were also conducted to study the influence of: (i) the crust thickness, (ii) the liquefied layer thickness, (iii) the non-liquefied bottom layer thickness, (iv) the pile diameter, and (v) the lateral pile head deflection constraint, on pile response subjected to lateral displacements induced by soil liquefaction. The effects of these parameters on single pile response are presented.

Book Influence of Soil Permeability on Liquefaction induced Lateral Pile Response

Download or read book Influence of Soil Permeability on Liquefaction induced Lateral Pile Response written by Jose Manuel Ramirez and published by . This book was released on 2010 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pile foundations have been significantly damaged by liquefaction-induced lateral spreading during earthquakes. There are large uncertainties regarding the effects of various soil properties on this pattern of soil-structure interaction. The main concern of this study is to numerically investigate the role of soil permeability in such lateral spreading scenarios. Through extensive calibration, finite element analysis models were developed in which the response reasonably matched experimental data from shake-table testing and centrifuge testing. The overall impact of permeability on the soil stratum and the pile response was similar for both situations. In most cases, soil displacement increased with increasing permeability, while pile load decreased.

Book Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground

Download or read book Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground written by Ross W. Boulanger and published by . This book was released on 2006 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of a workshop on Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, held in Davis, California, March 16-18, 2005. Sponsored by the Pacific Earthquake Engineering Research Center; University of California at Berkeley; Center for Urban Earthquake Engineering; Tokyo Institute of Technology; Geo-Institute of ASCE. This collection contains 25 papers that discuss physical measurements and observations from earthquake case histories, field tests in blast-liquefied ground, dynamic centrifuge model studies, and large-scale shaking table studies. Papers contain recent findings on fundamental soil-pile interaction mechanisms, numerical analysis methods, and reviews and evaluations of existing and emerging design methodologies. This proceeding provides comprehensive coverage of a major issue in earthquake engineering practice and hazard mitigation efforts.

Book Pile Response to Liquefaction induced Lateral Spread

Download or read book Pile Response to Liquefaction induced Lateral Spread written by Wolfgang Daniel Meyersohn and published by . This book was released on 1994 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Effects of Liquefaction on Pile Foundations

Download or read book Effects of Liquefaction on Pile Foundations written by John C. Horne and published by . This book was released on 1998 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Development of a Design Guideline for Pile Foundations Subjected to Liquefaction Induced Lateral Spreading

Download or read book Development of a Design Guideline for Pile Foundations Subjected to Liquefaction Induced Lateral Spreading written by and published by . This book was released on 2021 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Extensive loss of stiffness and strength in liquefied soils can cause large ground deformations during strong earthquake shaking. One of the major sources of damage in pile foundations in liquefied soil is the excessive deformation due to lateral spreading. Pile-supported wharves subjected to earthquake motions are expected to accommodate inertial loads imposed at pile head from the superstructure as well as the kinematic loads imposed on piles from the lateral ground deformations. Current design codes significantly vary on how to combine inertia and kinematic demands. Recent research on soil-foundation-structure interaction suffers from lack of experiment-based data. There is a serious need to fill the knowledge gap and help designers to better evaluate risk and design cost-effective pile foundations. In this research, the interaction of inertial and kinematic demands is investigated using data from five well-instrumented centrifuge tests on pile-supported wharves. The observations from these tests were used to investigate the time- and depth-dependent nature of kinematic and inertial demands on the deep foundations during earthquake loading. The test results were analyzed to provide the relative contributions of peak inertial loads and peak soil displacements during critical cycles, and the data revealed the depth-dependency of these factors. The results were used to refine existing guidelines for design of pile-supported wharves subjected to foundation deformations. The observations from centrifuge tests were then used to evaluate the accuracy of the equivalent static analysis (ESA) procedure using p-y models for the design of pile-supported wharves subjected to lateral ground deformations during earthquake loading. The piles in these centrifuge tests were subjected to the combined effects of wharf deck inertial loads and ground deformations. The experiments included soil properties ranging from nonliquefiable to fully liquefied cases which provided a wide range of conditions against which the ESA method could be evaluated. Finally, a nonlinear dynamic model of a pile-supported wharf was created and calibrated using recorded data from a centrifuge test. The objective of the numerical modeling was to create a calibrated numerical model that captures key responses of the wharf and the soil in order to be used in subsequent studies that are too costly and time-consuming to do using physical modeling. The calibrated numerical model was then used in an incremental dynamic analysis to evaluate the effects of ground motion duration on the dynamic response of a pile-supported wharf subjected to liquefaction-induced lateral ground deformations. The analysis results provided insights on the relative contribution of inertial and kinematic demands on the response of the wharf with respect to motion duration.

Book Single Piles in Liquefiable Ground

Download or read book Single Piles in Liquefiable Ground written by Rui Wang and published by Springer. This book was released on 2016-03-17 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on the seismic response of piles in liquefiable ground. It describes the design of a three-dimensional, unified plasticity model for large post-liquefaction shear deformation of sand, formulated and implemented for parallel computing. It also presents a three-dimensional, dynamic finite element analysis method for piles in liquefiable ground, developed on the basis of this model,. Employing a combination of case analysis, centrifuge shaking table experiments and numerical simulations using the proposed methods, it demonstrates the seismic response patterns of single piles in liquefiable ground. These include basic force-resistance mode, kinematic and inertial interaction coupling mechanism and major influence factors. It also discusses a beam on the nonlinear Winkler foundation (BNWF) solution and a modified neutral plane solution developed and validated using centrifuge experiments for piles in consolidating and reconsolidating ground. Lastly, it studies axial pile force and settlement during post-earthquake reconsolidation, showing pile axial force to be irrelevant in the reconsolidation process, while settlement is process dependent.

Book State of the Art and Practice in the Assessment of Earthquake Induced Soil Liquefaction and Its Consequences

Download or read book State of the Art and Practice in the Assessment of Earthquake Induced Soil Liquefaction and Its Consequences written by National Academies of Sciences, Engineering, and Medicine and published by . This book was released on 2019-01-30 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earthquake-induced soil liquefaction (liquefaction) is a leading cause of earthquake damage worldwide. Liquefaction is often described in the literature as the phenomena of seismic generation of excess porewater pressures and consequent softening of granular soils. Many regions in the United States have been witness to liquefaction and its consequences, not just those in the west that people associate with earthquake hazards. Past damage and destruction caused by liquefaction underline the importance of accurate assessments of where liquefaction is likely and of what the consequences of liquefaction may be. Such assessments are needed to protect life and safety and to mitigate economic, environmental, and societal impacts of liquefaction in a cost-effective manner. Assessment methods exist, but methods to assess the potential for liquefaction triggering are more mature than are those to predict liquefaction consequences, and the earthquake engineering community wrestles with the differences among the various assessment methods for both liquefaction triggering and consequences. State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences evaluates these various methods, focusing on those developed within the past 20 years, and recommends strategies to minimize uncertainties in the short term and to develop improved methods to assess liquefaction and its consequences in the long term. This report represents a first attempt within the geotechnical earthquake engineering community to consider, in such a manner, the various methods to assess liquefaction consequences.

Book Design of Pile Foundations in Liquefiable Soils

Download or read book Design of Pile Foundations in Liquefiable Soils written by Gopal Madabhushi and published by Imperial College Press. This book was released on 2010 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pile foundations are the most common form of deep foundations that are used both onshore and offshore to transfer large superstructural loads into competent soil strata. This book provides many case histories of failure of pile foundations due to earthquake loading and soil liquefaction. Based on the observed case histories, the possible mechanisms of failure of the pile foundations are postulated. The book also deals with the additional loading attracted by piles in liquefiable soils due to lateral spreading of sloping ground. Recent research at Cambridge forms the backbone of this book with the design methodologies being developed directly based on quantified centrifuge test results and numerical analysis. The book provides designers and practicing civil engineers with a sound knowledge of pile behaviour in liquefiable soils and easy-to-use methods to design pile foundations in seismic regions. For graduate students and researchers, it brings together the latest research findings on pile foundations in a way that is relevant to geotechnical practice. Sample Chapter(s). Foreword (85 KB). Chapter 1: Performance of Pile Foundations (4,832 KB). Contents: Performance of Pile Foundations; Inertial and Kinematic Loading; Accounting for Axial Loading in Level Ground; Lateral Spreading of Sloping Ground; Axial Loading on Piles in Laterally Spreading Ground; Design Examples. Readership: Researchers, academics, designers and graduate students in earthquake engineering, civil engineering and ocean/coastal engineering.

Book Behavior of Piles During Earthquake induced Lateral Spreading

Download or read book Behavior of Piles During Earthquake induced Lateral Spreading written by Priyanshu Singh and published by . This book was released on 2002 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Lateral Spreading Effects on Pile Foundations

Download or read book Lateral Spreading Effects on Pile Foundations written by Ahmed Amr Ebeido and published by . This book was released on 2019 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current techniques for assessing the effects of liquefaction-induced lateral spreading on pile foundations are based on simplified analytical methods that potentially lead to estimates that vary within a wide range. This might lead to potential excessive design demands, with high expenses for pre-event mitigation. Conversely, underestimated design demands might lead to costly post-event damage remediation. The conducted study is directed towards enhancements to the assessment of liquefaction induced lateral spreading effects on bridge foundation systems. Current simplified analysis techniques have been only been developed recently in preliminary form. In addition, quantitative data sets from large-scale experimentation are needed concerning the response of such ground-foundation scenarios. An effort was undertaken to address the simplified method areas of applicability and potential for enhancements. Challenges in implementing the methodology are presented within a comparative scope contrasting results of a California bridge site from different studies. On this basis, insights are derived for improvement of the currently employed simplified analysis guidelines. Furthermore, large scale shake table testing was performed on pile foundation-ground systems, under conditions of liquefaction-induced lateral spreading. A total of 7 different experiments were conducted with varying heights, ground inclination, soil profiles, pile material and cross-section. The tested models were densely instrumented, including strain gauges, total pressure and excess pore-pressure sensors, accelerometers and displacement pots. In addition, data from 4 different experiments conducted in the NIED Japan shake table facility, including single piles and pile groups and varying soil profiles were utilized to provide additional insights and characteristics. In these tests, the laminar soil container was placed in a mildly-inclined configuration to allow for accumulation of the liquefaction-induced lateral deformations. Detailed instrumentation and data interpretation procedures enable measurement of the fundamental soil-pile interaction behavior. The loading mechanisms have large cyclic components that may act in-phase or out-of-phase along the pile embedded length. The conducted heavily instrumented tests resulted in a wealth of quantitative response data sets, to be used for: i) drawing insights and recommendations of practical significance based directly on the observed response, ii) calibration of simplified and more elaborate computational analysis tools, and iii) enhancement of our design guidelines and practical assessment procedures. Monotonic pushover analysis based on newly derived p-y curves in this study is found to provide useful design estimates in good agreement with the observed experimental results.

Book Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions

Download or read book Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions written by Francesco Silvestri and published by CRC Press. This book was released on 2019-07-19 with total page 8083 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions contains invited, keynote and theme lectures and regular papers presented at the 7th International Conference on Earthquake Geotechnical Engineering (Rome, Italy, 17-20 June 2019. The contributions deal with recent developments and advancements as well as case histories, field monitoring, experimental characterization, physical and analytical modelling, and applications related to the variety of environmental phenomena induced by earthquakes in soils and their effects on engineered systems interacting with them. The book is divided in the sections below: Invited papers Keynote papers Theme lectures Special Session on Large Scale Testing Special Session on Liquefact Projects Special Session on Lessons learned from recent earthquakes Special Session on the Central Italy earthquake Regular papers Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions provides a significant up-to-date collection of recent experiences and developments, and aims at engineers, geologists and seismologists, consultants, public and private contractors, local national and international authorities, and to all those involved in research and practice related to Earthquake Geotechnical Engineering.