EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Introduction to Simulations of Semiconductor Lasers

Download or read book Introduction to Simulations of Semiconductor Lasers written by Marek Wartak and published by CRC Press. This book was released on 2024-03-21 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulations play an increasingly important role not only in scientific research but also in engineering developments. Introduction to Simulations of Semiconductor Lasers introduces senior undergraduates to the design of semiconductor lasers and their simulations. The book begins with explaining the physics and fundamental characteristics behind semiconductor lasers and their applications. It presumes little prior knowledge, such that only a familiarity with the basics of electromagnetism and quantum mechanics is required. The book transitions from textbook explanations, equations, and formulas to ready-to-run numeric codes that enable the visualization of concepts and simulation studies. Multiple chapters are supported by MATLAB code which can be accessed by the students. These are ready-to-run, but they can be modified to simulate other structures if desired. Providing a unified treatment of the fundamental principles and physics of semiconductors and semiconductor lasers, Introduction to Simulations of Semiconductor Lasers is an accessible, practical guide for advanced undergraduate students of Physics, particularly for courses in laser physics. Key Features: A unified treatment of fundamental principles Explanations of the fundamental physics of semiconductor Explanations of the operation of semiconductor lasers An historical overview of the subject

Book Introduction to Simulations of Semiconductor Lasers

Download or read book Introduction to Simulations of Semiconductor Lasers written by Marek Wartak and published by . This book was released on 2024 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulations play an increasingly important role not only in scientific research but also in engineering developments. Introduction to Simulations of Semiconductor Lasers introduces senior undergraduates to the design of semiconductor lasers and their simulations. The book begins with explaining the physics and fundamental characteristics behind semiconductor lasers and their applications. It presumes little prior knowledge, such that only a familiarity with the basics of electromagnetism and quantum mechanics is required. The book transitions from textbook explanations, equations, and formulas to ready-to-run numeric codes that enable the visualization of concepts and simulation studies. Multiple chapters are supported by Matlab code which can be accessed by the students. These are ready-to-run, but they can be modified to simulate other structures if desired. Providing a unified treatment of the fundamental principles and physics of semiconductors and semiconductor lasers, Introduction to Simulations of Semiconductor Lasers is an accessible, practical guide for advanced undergraduate students of Physics, particularly for courses in laser physics. Key Features: - A unified treatment of fundamental principles. - Explanations of the fundamental physics of semiconductor. - Explanations of the operation of semiconductor lasers. - A historical overview of the subject. Marek S.Wartak is a Professor in the Department of Physics and Computer Science at Wilfrid Laurier University, Waterloo, Ontario. He has over 30 years of experience in semiconductor physics, photonics and optoelectronics, analytical methods, modelling and computer-aided design tools.

Book Physics and Simulation of Semiconductor Lasers

Download or read book Physics and Simulation of Semiconductor Lasers written by Stefan Odermatt and published by . This book was released on 2006 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Physics and Simulation of Semiconductor Lasers  Statistic and Dynamic Characteristics

Download or read book Physics and Simulation of Semiconductor Lasers Statistic and Dynamic Characteristics written by Stefan Odermatt and published by . This book was released on 2006 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Spatio Temporal Dynamics and Quantum Fluctuations in Semiconductor Lasers

Download or read book Spatio Temporal Dynamics and Quantum Fluctuations in Semiconductor Lasers written by Edeltraud Gehrig and published by Springer Science & Business Media. This book was released on 2003-09-22 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents fundamental theories and simulations of the spatio-temporal dynamics and quantum fluctuations in semiconductor lasers. The dynamic interplay of light and matter is theoretically described by taking into account microscopic carrier dynamics, spatially dependent light-field propagation and the influence of spontaneous emission and noise.

Book Physics of Semiconductor Lasers

Download or read book Physics of Semiconductor Lasers written by B. Mroziewicz and published by Elsevier. This book was released on 2017-01-31 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor lasers and the trends in their development.

Book Semiconductor Device Physics and Simulation

Download or read book Semiconductor Device Physics and Simulation written by J.S. Yuan and published by Springer Science & Business Media. This book was released on 1998-05-31 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: The advent of the microelectronics technology has made ever-increasing numbers of small devices on a same chip. The rapid emergence of ultra-large-scaled-integrated (ULSI) technology has moved device dimension into the sub-quarter-micron regime and put more than 10 million transistors on a single chip. While traditional closed-form analytical models furnish useful intuition into how semiconductor devices behave, they no longer provide consistently accurate results for all modes of operation of these very small devices. The reason is that, in such devices, various physical mechanisms affect the device performance in a complex manner, and the conventional assumptions (i. e. , one-dimensional treatment, low-level injection, quasi-static approximation, etc. ) em ployed in developing analytical models become questionable. Thus, the use of numerical device simulation becomes important in device modeling. Researchers and engineers will rely even more on device simulation for device design and analysis in the future. This book provides comprehensive coverage of device simulation and analysis for various modem semiconductor devices. It will serve as a reference for researchers, engineers, and students who require in-depth, up-to-date information and understanding of semiconductor device physics and characteristics. The materials of the book are limited to conventional and mainstream semiconductor devices; photonic devices such as light emitting and laser diodes are not included, nor does the book cover device modeling, device fabrication, and circuit applications.

Book Semiconductor Laser Physics

    Book Details:
  • Author : Weng W. Chow
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642612253
  • Pages : 509 pages

Download or read book Semiconductor Laser Physics written by Weng W. Chow and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor-Laser Physics discusses the underlying physics and operational principles of semiconductor lasers. The optical and electronic properties of the semiconductor medium are analyzed in detail, including quantum confinement and gain engineering effects. A semiclassical and a quantum version of the laser theory are presented, including an analysis of single- and multimode operation, instabilities, laser arrays, unstable resonators, and microcavity lasers.

Book Microcavity Semiconductor Lasers

Download or read book Microcavity Semiconductor Lasers written by Yong-zhen Huang and published by John Wiley & Sons. This book was released on 2021-06-28 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microcavity Semiconductor Lasers Explore this thorough overview of integrable microcavity semiconductor lasers and their applications from two leading voices in the field Attracting a great deal of attention over the last decades for their promising applications in photonic integration and optical interconnects, microcavity semiconductor lasers continue to develop via advances in fundamental physics, theoretical analysis, and numerical simulations. In a new work that will be of interest to researchers and practitioners alike, Microcavity Semiconductor Lasers: Principles, Design, and Applications delivers an application-oriented and highly relevant exploration of the theory, fabrication, and applications of these practical devices. The book focuses on unidirectional emission microcavity lasers for photonic integrated circuits, including polygonal microresonators, microdisk, and microring lasers. After an introductory overview of optical microcavities for microlasers and detailed information of the lasers themselves, including mode structure control and characteristics, and lasing properties, the distinguished authors discuss fabrication and applications of different microcavity lasers. Prospects for future research and potential new applications round out the book. Readers will also benefit from the inclusion of: A thorough introduction to multilayer optical waveguides, the FDTD Method, and Padé Approximation, and deformed, chaos, and unidirectional emission microdisk lasers An exploration of mode analysis for triangle and square microresonators similar as FP Cavity Practical discussions of mode analysis and control for deformed square microlasers An examination of hexagonal microcavity lasers and polygonal microcavities, along with vertical radiation loss for 3D microcavities Perfect for laser specialists, semiconductor physicists, and solid-state physicists, Microcavity Semiconductor Lasers: Principles, Design, and Applications will also earn a place in the libraries of materials scientists and professionals working in the semiconductor and optical industries seeking a one-stop reference for integrable microcavity semiconductor lasers.

Book Spatio Temporal Modeling and Device Optimization of Passively Mode Locked Semiconductor Lasers

Download or read book Spatio Temporal Modeling and Device Optimization of Passively Mode Locked Semiconductor Lasers written by Stefan Meinecke and published by Springer Nature. This book was released on 2022-03-26 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates passively mode-locked semiconductor lasers by numerical methods. The understanding and optimization of such devices is crucial to the advancement of technologies such as optical data communication and dual comb spectroscopy. The focus of the thesis is therefore on the development of efficient numerical models, which are able both to perform larger parameter studies and to provide quantitative predictions. Along with that, visualization and evaluation techniques for the rich spatio-temporal laser dynamics are developed; these facilitate the physical interpretation of the observed features. The investigations in this thesis revolve around two specific semiconductor devices, namely a monolithically integrated three-section tapered quantum-dot laser and a V-shaped external cavity laser. In both cases, the simulations closely tie in with experimental results, which have been obtained in collaboration with the TU Darmstadt and the ETH Zurich. Based on the successful numerical reproduction of the experimental findings, the emission dynamics of both lasers can be understood in terms of the cavity geometry and the active medium dynamics. The latter, in particular, highlights the value of the developed simulation tools, since the fast charge-carrier dynamics are generally not experimentally accessible during mode-locking operation. Lastly, the numerical models are used to perform laser design explorations and thus to derive recommendations for further optimizations.

Book Advances In Semiconductor Lasers And Applications To Optoelectronics  Ijhses Vol  9 No  4

Download or read book Advances In Semiconductor Lasers And Applications To Optoelectronics Ijhses Vol 9 No 4 written by Mitra Dutta and published by World Scientific. This book was released on 2000-06-21 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Foreword by Charles H Townes This volume includes highlights of the theories underlying the essential phenomena occurring in novel semiconductor lasers as well as the principles of operation of selected heterostructure lasers. To understand scattering processes in heterostructure lasers and related optoelectronic devices, it is essential to consider the role of dimensional confinement of charge carriers as well as acoustical and optical phonons in quantum structures. Indeed, it is important to consider the confinement of both phonons and carriers in the design and modeling of novel semiconductor lasers such as the tunnel injection laser, quantum well intersubband lasers, and quantum dot lasers. The full exploitation of dimensional confinement leads to the exciting new capability of scattering time engineering in novel semiconductor lasers.As a result of continuing advances in techniques for growing quantum heterostructures, recent developments are likely to be followed in coming years by many more advances in semiconductor lasers and optoelectronics. As our understanding of these devices and the ability to fabricate them grow, so does our need for more sophisticated theories and simulation methods bridging the gap between quantum and classical transport.

Book Analysis of Spatio Temporal Phenomena in High Brightness Diode Lasers using Numerical Simulations

Download or read book Analysis of Spatio Temporal Phenomena in High Brightness Diode Lasers using Numerical Simulations written by Anissa Zeghuzi and published by Cuvillier Verlag. This book was released on 2020-10-22 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Broad-area lasers are edge-emitting semiconductor lasers with a wide lateral emission aperture. This feature enables high output powers but also diminishes the lateral beam quality and results in their inherently non-stationary behavior. Research in the area is driven by application, and the main objective is to increase the brightness, which includes both output power and lateral beam quality. To understand the underlying spatio-temporal phenomena and to apply this knowledge in order to reduce costs for brightness optimization, a self-consistent simulation tool taking all essential processes into account is vital. Firstly, in this work a quasi-three-dimensional opto-electronic and thermal model is presented that describes essential qualitative characteristics of real devices well. Time-dependent traveling-wave equations are utilized to characterize the inherently non-stationary optical fields, which are coupled to dynamic rate equations for the excess carriers in the active region. This model is extended by an injection-current-density model to accurately include lateral current spreading and spatial hole burning. Furthermore, a temperature model is presented that includes short-time local heating near the active region as well as the formation of a stationary temperature profile. Secondly, the reasons of brightness degradation, i.e. the origins of power saturation and the spatially modulated field profile, are investigated. And lastly, designs that mitigate those effects limiting the lateral brightness under pulsed and continuous-wave operation are discussed. Amongst those designs a novel “chessboard laser” is presented that utilizes longitudinal-lateral gain-loss modulation and an additional phase tailoring to obtain a very low far-field divergence.

Book Semiconductor Lasers

    Book Details:
  • Author : Junji Ohtsubo
  • Publisher : Springer
  • Release : 2017-05-03
  • ISBN : 3319561383
  • Pages : 679 pages

Download or read book Semiconductor Lasers written by Junji Ohtsubo and published by Springer. This book was released on 2017-05-03 with total page 679 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in semiconductor lasers are discussed, but also for example the method of self-mixing interferometry in quantum-cascade lasers, which is indispensable in practical applications. Further, this edition covers chaos synchronization between two lasers and the application to secure optical communications. Another new topic is the consistency and synchronization property of many coupled semiconductor lasers in connection with the analogy of the dynamics between synaptic neurons and chaotic semiconductor lasers, which are compatible nonlinear dynamic elements. In particular, zero-lag synchronization between distant neurons plays a crucial role for information processing in the brain. Lastly, the book presents an application of the consistency and synchronization property in chaotic semiconductor lasers, namely a type of neuro-inspired information processing referred to as reservoir computing.

Book Semiconductor Laser Fundamentals

Download or read book Semiconductor Laser Fundamentals written by Toshiaki Suhara and published by CRC Press. This book was released on 2004-03-16 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ranging from fundamental theoretical concepts to advanced device technologies, this reference/text explores the engineering, characteristics, and performance of specific semiconductor lasers. It defines key principles in electromagnetics, optoelectronics, and laser implementation for novel applications in optical communications, storage, processing, measurement, and sensing. This text prepares students for advanced experimental and theoretical research in semiconductor laser technology and provides the only comprehensive, systematic, and concise description of semiconductor lasers available for an understanding of the physics and parameters of laser operation and function.

Book Semiconductor Modeling Techniques

Download or read book Semiconductor Modeling Techniques written by Xavier Marie and published by Springer Science & Business Media. This book was released on 2012-06-26 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the key theoretical techniques for semiconductor research to quantitatively calculate and simulate the properties. It presents particular techniques to study novel semiconductor materials, such as 2D heterostructures, quantum wires, quantum dots and nitrogen containing III-V alloys. The book is aimed primarily at newcomers working in the field of semiconductor physics to give guidance in theory and experiment. The theoretical techniques for electronic and optoelectronic devices are explained in detail.

Book Semiconductor Optoelectronic Devices

Download or read book Semiconductor Optoelectronic Devices written by Joachim Piprek and published by Elsevier. This book was released on 2013-10-22 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optoelectronics has become an important part of our lives. Wherever light is used to transmit information, tiny semiconductor devices are needed to transfer electrical current into optical signals and vice versa. Examples include light emitting diodes in radios and other appliances, photodetectors in elevator doors and digital cameras, and laser diodes that transmit phone calls through glass fibers. Such optoelectronic devices take advantage of sophisticated interactions between electrons and light. Nanometer scale semiconductor structures are often at the heart of modern optoelectronic devices. Their shrinking size and increasing complexity make computer simulation an important tool to design better devices that meet ever rising perfomance requirements. The current need to apply advanced design software in optoelectronics follows the trend observed in the 1980's with simulation software for silicon devices. Today, software for technology computer-aided design (TCAD) and electronic design automation (EDA) represents a fundamental part of the silicon industry. In optoelectronics, advanced commercial device software has emerged recently and it is expected to play an increasingly important role in the near future. This book will enable students, device engineers, and researchers to more effectively use advanced design software in optoelectronics. Provides fundamental knowledge in semiconductor physics and in electromagnetics, while helping to understand and use advanced device simulation software Demonstrates the combination of measurements and simulations in order to obtain realistic results and provides data on all required material parameters Gives deep insight into the physics of state-of-the-art devices and helps to design and analyze of modern optoelectronic devices

Book Semiconductor Lasers I

    Book Details:
  • Author : Eli Kapon
  • Publisher : Academic Press
  • Release : 1999-01-12
  • ISBN : 0080540929
  • Pages : 467 pages

Download or read book Semiconductor Lasers I written by Eli Kapon and published by Academic Press. This book was released on 1999-01-12 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the device physics of semiconductor lasers in five chapters written by recognized experts in this field. The volume begins by introducing the basic mechanisms of optical gain in semiconductors and the role of quantum confinement in modern quantum well diode lasers. Subsequent chapters treat the effects of built-in strain, one of the important recent advances in the technology of these lasers, and the physical mechanisms underlying the dynamics and high speed modulation of these devices. The book concludes with chapters addressing the control of photon states in squeezed-light and microcavity structures, and electron states in low dimensional quantum wire and quantum dot lasers. The book offers useful information for both readers unfamiliar with semiconductor lasers, through the introductory parts of each chapter, as well as a state-of-the-art discussion of some of the most advanced semiconductor laser structures, intended for readers engaged in research in this field. This book may also serve as an introduction for the companion volume, Semiconductor Lasers II: Materials and Structures, which presents further details on the different material systems and laser structures used for achieving specific diode laser performance features. Introduces the reader to the basics of semiconductor lasers Covers the fundamentals of lasing in semiconductors, including quantum confined and microcavity structures Beneficial to readers interested in the more general aspects of semiconductor physics and optoelectronic devices, such as quantum confined heterostructures and integrated optics Each chapter contains a thorough introduction to the topic geared toward the non-expert, followed by an in-depth discussion of current technology and future trends Useful for professionals engaged in research and development Contains numerous schematic and data-containing illustrations