EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Physically based Impedance Modelling of Lithium Ion Cells

Download or read book Physically based Impedance Modelling of Lithium Ion Cells written by Illig, Joerg and published by KIT Scientific Publishing. This book was released on 2014-09-19 with total page 231 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, a new procedure to analyze lithium-ion cells is introduced. The cells are disassembled to analyze their components in experimental cell housings. Then, Electrochemical Impedance Spectroscopy, time domain measurements and the Distribution function of Relaxation Times are applied to obtain a deep understanding of the relevant loss processes. This procedure yields a notable surplus of information about the electrode contributions to the overall internal resistance of the cell.

Book Physically Based Impedance Modelling of Lithium Ion Cells

Download or read book Physically Based Impedance Modelling of Lithium Ion Cells written by Jörg Illig and published by . This book was released on 2020-10-09 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, a new procedure to analyze lithium-ion cells is introduced. The cells are disassembled to analyze their components in experimental cell housings. Then, Electrochemical Impedance Spectroscopy, time domain measurements and the Distribution function of Relaxation Times are applied to obtain a deep understanding of the relevant loss processes. This procedure yields a notable surplus of information about the electrode contributions to the overall internal resistance of the cell. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.

Book Battery Management Systems  Volume III  Physics Based Methods

Download or read book Battery Management Systems Volume III Physics Based Methods written by Gregory L. Plett and published by Artech House. This book was released on 2024-01-31 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book -- the third and final volume in a series describing battery-management systems – shows you how to use physics-based models of battery cells in a computationally efficient way for optimal battery-pack management and control to maximize battery-pack performance and extend life. It covers the foundations of electrochemical model-based battery management system while introducing and teaching the state of the art in physics-based methods for battery management. Building upon the content in volumes I and II, the book helps you identify parameter values for physics-based models of a commercial lithium-ion battery cell without requiring cell teardown; shows you how to estimate the internal electrochemical state of all cells in a battery pack in a computationally efficient way during operation using these physics-based models; demonstrates the use the models plus state estimates in a battery management system to optimize fast-charge of battery packs to minimize charge time while also maximizing battery service life; and takes you step-by-step through the use models to optimize the instantaneous power that can be demanded from the battery pack while also maximizing battery service life. The book also demonstrates how to overcome the primary roadblocks to implementing physics-based method for battery management: the computational-complexity roadblock, the parameter-identification roadblock, and the control-optimization roadblock. It also uncovers the fundamental flaw in all present “state of art” methods and shows you why all BMS based on equivalent-circuit models must be designed with over-conservative assumptions. This is a strong resource for battery engineers, chemists, researchers, and educators who are interested in advanced battery management systems and strategies based on the best available understanding of how battery cells operate.

Book Lithium Ion Batteries

    Book Details:
  • Author : Mohammad (Mim) Rahimi
  • Publisher : MDPI
  • Release : 2021-05-04
  • ISBN : 3036505849
  • Pages : 230 pages

Download or read book Lithium Ion Batteries written by Mohammad (Mim) Rahimi and published by MDPI. This book was released on 2021-05-04 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium-ion batteries (LIBs), as a key part of the 2019 Nobel Prize in Chemistry, have become increasingly important in recent years, owing to their potential impact on building a more sustainable future. Compared with other batteries developed, LIBs offer high energy density, high discharge power, and a long service life. These characteristics have facilitated a remarkable advance of LIBs in many frontiers, including electric vehicles, portable and flexible electronics, and stationary applications. Since the field of LIBs is advancing rapidly and attracting an increasing number of researchers, it is necessary to often provide the community with the latest updates. Therefore, this book was designed to focus on updating the electrochemical community with the latest advances and prospects on various aspects of LIBs. The materials presented in this book cover advances in several fronts of the technology, ranging from detailed fundamental studies of the electrochemical cell to investigations to better improve parameters related to battery packs.

Book Microstructural Characterisation  Modelling and Simulation of Solid Oxide Fuel Cell Cathodes

Download or read book Microstructural Characterisation Modelling and Simulation of Solid Oxide Fuel Cell Cathodes written by Joos, Jochen and published by KIT Scientific Publishing. This book was released on 2017-06-29 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Finite Element Method  FEM  Model and Performance Analysis of Solid Oxide Fuel Cells

Download or read book Finite Element Method FEM Model and Performance Analysis of Solid Oxide Fuel Cells written by Geisler, Helge Ingolf and published by KIT Scientific Publishing. This book was released on 2019-07-10 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work presents a numerical FEM framework, capable of predicting SOFC performance under technically relevant, planar stack contacting conditions. A high level of confidence in the model predictions is supplied by using exclusively experimentally determined material/kinetic parameters and by a comprehensive validation. The presented model aids SOFC stack development by pre-evaluating possible material choices and design combinations for cells/interconnectors without any experimental effort.

Book Emerging Technologies for Electric and Hybrid Vehicles

Download or read book Emerging Technologies for Electric and Hybrid Vehicles written by Jesús Manuel González Pérez and published by MDPI. This book was released on 2018-10-17 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a printed edition of the Special Issue "Emerging Technologies for Electric and Hybrid Vehicles" that was published in energies

Book Electrochemical Performance and Stability of Ba       Sr       Co       Fe       O         for Oxygen Transport Membranes

Download or read book Electrochemical Performance and Stability of Ba Sr Co Fe O for Oxygen Transport Membranes written by Niedrig, Christian and published by KIT Scientific Publishing. This book was released on 2015-12-23 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Impedance Spectroscopy

    Book Details:
  • Author : Evgenij Barsoukov
  • Publisher : John Wiley & Sons
  • Release : 2018-03-22
  • ISBN : 1119333180
  • Pages : 560 pages

Download or read book Impedance Spectroscopy written by Evgenij Barsoukov and published by John Wiley & Sons. This book was released on 2018-03-22 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Essential Reference for the Field, Featuring Protocols, Analysis, Fundamentals, and the Latest Advances Impedance Spectroscopy: Theory, Experiment, and Applications provides a comprehensive reference for graduate students, researchers, and engineers working in electrochemistry, physical chemistry, and physics. Covering both fundamentals concepts and practical applications, this unique reference provides a level of understanding that allows immediate use of impedance spectroscopy methods. Step-by-step experiment protocols with analysis guidance lend immediate relevance to general principles, while extensive figures and equations aid in the understanding of complex concepts. Detailed discussion includes the best measurement methods and identifying sources of error, and theoretical considerations for modeling, equivalent circuits, and equations in the complex domain are provided for most subjects under investigation. Written by a team of expert contributors, this book provides a clear understanding of impedance spectroscopy in general as well as the essential skills needed to use it in specific applications. Extensively updated to reflect the field’s latest advances, this new Third Edition: Incorporates the latest research, and provides coverage of new areas in which impedance spectroscopy is gaining importance Discusses the application of impedance spectroscopy to viscoelastic rubbery materials and biological systems Explores impedance spectroscopy applications in electrochemistry, semiconductors, solid electrolytes, corrosion, solid state devices, and electrochemical power sources Examines both the theoretical and practical aspects, and discusses when impedance spectroscopy is and is not the appropriate solution to an analysis problem Researchers and engineers will find value in the immediate practicality, while students will appreciate the hands-on approach to impedance spectroscopy methods. Retaining the reputation it has gained over years as a primary reference, Impedance Spectroscopy: Theory, Experiment, and Applications once again present a comprehensive reference reflecting the current state of the field.

Book Electrochemical Phenomena in the Cathode Impedance Spectrum of PEM Fuel Cells

Download or read book Electrochemical Phenomena in the Cathode Impedance Spectrum of PEM Fuel Cells written by Samuel Cruz-Manzo and published by Elsevier. This book was released on 2022-06-18 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrochemical Phenomena in the Cathode Impedance Spectrum of PEM Fuel Cells: Fundamentals, Modelling, and Applications establishes how the electrochemical and diffusion mechanisms of a polymer electrolyte membrane fuel cell (PEMFC) are related to electrochemical impedance spectroscopy (EIS) measurements using physics-based impedance models derived from fundamental electrode and diffusion theories. The contribution of the different phenomena occurring at the different layers comprising the cathode on the impedance response of the PEMFC is revealed through EIS-modelling analysis. The relation between EIS measurements and polarisation curves representing the performance of PEMFCs is established. Insight is gained into how the EIS response of the PEMFC changes at different operating conditions e.g. relative humidity, load demand, gas reactant stoichiometry and temperature using physics-based impedance models. The application of impedance models with EIS measurements carried out in the individual cells comprising a PEMFC stack is demonstrated, while recent modelling approaches and other impedance models reported in the literature to represent the EIS response of the PEMFC are also considered and discussed. Provides further understanding of ambiguities during the interpretation of the electrochemical impedance spectrum of the PEMFC Includes impedance models written in MATLAB® for replication or application to other PEMFC-EIS measurements Includes impedance spectra of the PEMFC at different operating conditions, electro/diffusion pathways for derivation of the impedance models and flowcharts for application of the impedance models with real-world measured EIS data

Book Design and Analysis of Large Lithium Ion Battery Systems

Download or read book Design and Analysis of Large Lithium Ion Battery Systems written by Shriram Santhanagopalan and published by Artech House. This book was released on 2014-12-01 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new resource provides you with an introduction to battery design and test considerations for large-scale automotive, aerospace, and grid applications. It details the logistics of designing a professional, large, Lithium-ion battery pack, primarily for the automotive industry, but also for non-automotive applications. Topics such as thermal management for such high-energy and high-power units are covered extensively, including detailed design examples. Every aspect of battery design and analysis is presented from a hands-on perspective. The authors work extensively with engineers in the field and this book is a direct response to frequently-received queries. With the authors’ unique expertise in areas such as battery thermal evaluation and design, physics-based modeling, and life and reliability assessment and prediction, this book is sure to provide you with essential, practical information on understanding, designing, and building large format Lithium-ion battery management systems.

Book Mathematical Modeling of Lithium Batteries

Download or read book Mathematical Modeling of Lithium Batteries written by Krishnan S. Hariharan and published by Springer. This book was released on 2017-12-28 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is unique to be the only one completely dedicated for battery modeling for all components of battery management system (BMS) applications. The contents of this book compliment the multitude of research publications in this domain by providing coherent fundamentals. An explosive market of Li ion batteries has led to aggressive demand for mathematical models for battery management systems (BMS). Researchers from multi-various backgrounds contribute from their respective background, leading to a lateral growth. Risk of this runaway situation is that researchers tend to use an existing method or algorithm without in depth knowledge of the cohesive fundamentals—often misinterpreting the outcome. It is worthy to note that the guiding principles are similar and the lack of clarity impedes a significant advancement. A repeat or even a synopsis of all the applications of battery modeling albeit redundant, would hence be a mammoth task, and cannot be done in a single offering. The authors believe that a pivotal contribution can be made by explaining the fundamentals in a coherent manner. Such an offering would enable researchers from multiple domains appreciate the bedrock principles and forward the frontier. Battery is an electrochemical system, and any level of understanding cannot ellipse this premise. The common thread that needs to run across—from detailed electrochemical models to algorithms used for real time estimation on a microchip—is that it be physics based. Build on this theme, this book has three parts. Each part starts with developing a framework—often invoking basic principles of thermodynamics or transport phenomena—and ends with certain verified real time applications. The first part deals with electrochemical modeling and the second with model order reduction. Objective of a BMS is estimation of state and health, and the third part is dedicated for that. Rules for state observers are derived from a generic Bayesian framework, and health estimation is pursued using machine learning (ML) tools. A distinct component of this book is thorough derivations of the learning rules for the novel ML algorithms. Given the large-scale application of ML in various domains, this segment can be relevant to researchers outside BMS domain as well. The authors hope this offering would satisfy a practicing engineer with a basic perspective, and a budding researcher with essential tools on a comprehensive understanding of BMS models.

Book Microscopy and Microanalysis for Lithium Ion Batteries

Download or read book Microscopy and Microanalysis for Lithium Ion Batteries written by Cai Shen and published by CRC Press. This book was released on 2023-05-26 with total page 533 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past three decades have witnessed the great success of lithium-ion batteries, especially in the areas of 3C products, electrical vehicles, and smart grid applications. However, further optimization of the energy/power density, coulombic efficiency, cycle life, charge speed, and environmental adaptability are still needed. To address these issues, a thorough understanding of the reaction inside a battery or dynamic evolution of each component is required. Microscopy and Microanalysis for Lithium-Ion Batteries discusses advanced analytical techniques that offer the capability of resolving the structure and chemistry at an atomic resolution to further drive lithium-ion battery research and development. • Provides comprehensive techniques that probe the fundamentals of Li-ion batteries. • Covers the basic principles of the techniques involved as well as its application in battery research. • Describes details of experimental setups and procedure for successful experiments. This reference is aimed at researchers, engineers, and scientists studying lithium-ion batteries including chemical, materials, and electrical engineers, as well as chemists and physicists.

Book ELECTRIMACS 2022

Download or read book ELECTRIMACS 2022 written by Serge Pierfederici and published by Springer Nature. This book was released on 2023-07-15 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects a selection of papers presented at ELECTRIMACS 2021, the 14th international conference of the IMACS TC1 Committee, held in Nancy, France, on 16th-19th May 2022. The conference papers deal with modelling, simulation, analysis, control, power management, design optimization, identification and diagnostics in electrical power engineering. The main application fields include electric machines and electromagnetic devices, power electronics, transportation systems, smart grids, renewable energy systems, energy storage like batteries and supercapacitors, fuel cells, and wireless power transfer. The contributions included in Volume 1 will be particularly focused on electrical engineering simulation aspects and innovative applications.

Book Mathematical Modeling of Lithium Ion Batteries and Cells

Download or read book Mathematical Modeling of Lithium Ion Batteries and Cells written by V. Subramanian and published by The Electrochemical Society. This book was released on 2012 with total page 37 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Battery Management Systems  Volume I  Battery Modeling

Download or read book Battery Management Systems Volume I Battery Modeling written by Gregory L. Plett and published by Artech House. This book was released on 2015-09-01 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large-scale battery packs are needed in hybrid and electric vehicles, utilities grid backup and storage, and frequency-regulation applications. In order to maximize battery-pack safety, longevity, and performance, it is important to understand how battery cells work. This first of its kind new resource focuses on developing a mathematical understanding of how electrochemical (battery) cells work, both internally and externally. This comprehensive resource derives physics-based micro-scale model equations, then continuum-scale model equations, and finally reduced-order model equations. This book describes the commonly used equivalent-circuit type battery model and develops equations for superior physics-based models of lithium-ion cells at different length scales. This resource also presents a breakthrough technology called the “discrete-time realization algorithm” that automatically converts physics-based models into high-fidelity approximate reduced-order models.

Book Lithium and Lithium ion Batteries

Download or read book Lithium and Lithium ion Batteries written by Kathryn Ann Striebel and published by The Electrochemical Society. This book was released on 2004 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: