EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Physical Modeling of Seismic Soil structure Interaction of Embedded Structures

Download or read book Physical Modeling of Seismic Soil structure Interaction of Embedded Structures written by Alper Turan and published by . This book was released on 2009 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dynamic Soil Structure Interaction

Download or read book Dynamic Soil Structure Interaction written by C. Zhang and published by Elsevier. This book was released on 1998-09-22 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic Soil-structure interaction is one of the major topics in earthquake engineering and soil dynamics since it is closely related to the safety evaluation of many important engineering projects, such as nuclear power plants, to resist earthquakes. In dealing with the analysis of dynamic soil-structure interactions, one of the most difficult tasks is the modeling of unbounded media. To solve this problem, many numerical methods and techniques have been developed. This book summarizes the most recent developments and applications in the field of dynamic soil-structure interaction, both in China and Switzerland. An excellent book for scientists and engineers in civil engineering, structural engineering, geotechnical engineering and earthquake engineering.

Book Developments in Dynamic Soil Structure Interaction

Download or read book Developments in Dynamic Soil Structure Interaction written by Polat Gülkan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the last couple of decades it has been recognized that the foundation material on which a structure is constructed may interact dynamically with the structure during its response to dynamic excitation to the extent that the stresses and deflections in the system are modified from the values that would have been developed if it had been on a rigid foundation. This phenomenon is examined in detail in the book. The basic solutions are examined in time and frequency domains and finite element and boundary element solutions compared. Experimental investigations aimed at correlation and verification with theory are described in detail. A wide variety of SSI problems may be formulated and solved approximately using simplified models in lieu of rigorous procedures; the book gives a good overview of these methods. A feature which often lacks in other texts on the subject is the way in which dynamic behavior of soil can be modeled. Two contributors have addressed this problem from the computational and physical characterization viewpoints. The book illustrates practical areas with the analysis of tunnel linings and stiffness and damping of pile groups. Finally, design code provisions and derivation of design input motions complete this thorough overview of SSI in conventional engineering practice. Taken in its entirety the book, authored by fifteen well known experts, gives an in-depth review of soil-structure interaction across a broad spectrum of aspects usually not covered in a single volume. It should be a readily useable reference for the research worker as well as the advance level practitioner. (abstract) This book treats the dynamic soil-structure interaction phenomenon across a broad spectrum of aspects ranging from basic theory, simplified and rigorous solution techniques and their comparisons as well as successes in predicting experimentally recorded measurements. Dynamic soil behavior and practical problems are given thorough coverage. It is intended to serve both as a readily understandable reference work for the researcher and the advanced-level practitioner.

Book Soil structure interaction in seismic analysis

Download or read book Soil structure interaction in seismic analysis written by Alexander Tyapin and published by ASV Construction. This book was released on 2019-06-11 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soil-structure interaction (SSI) is an important phenomenon in the seismic response analysis. As seismologists describe seismic excitation in terms of the seismic motion of certain control point at the free surface of the initial site, the question is whether the same point of the structure (after structure appears) will have the same seismic response motion in case of the same seismic event. If yes, then seismic motion from seismologists is directly applied to the base of the structure (it is called “fixed-base analysis”), and they say that “no SSI occurs”’ (though literally speaking soil is forcing structure to move, so interaction is always present). This is a conventional approach in the field of civil engineering. However, if heavy and rigid structure (sometimes embedded) is erected on medium or soft soil site, this structure changes the seismic response motion of the soil as compared to the initial free-field picture. Such a situation is typical for Nuclear Power Plants (NPPs), deeply embedded structures, etc. The book describes different approaches to SSI analysis and different SSI effects. Special attention is paid to the Combined Asymptotic Method (CAM) developed by the author and used for the design of NPPs in seismic regions. Nowadays, some civil structures have parameters comparable to those of NPPs (e.g., masses and embedment), so these approaches become useful for the civil structural engineers as well.

Book Seismic Soil structure Interaction Analysis Using Simple Physical Models and Wavelets

Download or read book Seismic Soil structure Interaction Analysis Using Simple Physical Models and Wavelets written by Rafael Baltodano Goulding and published by . This book was released on 2003 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Foundation Vibration Analysis Using Simple Physical Models

Download or read book Foundation Vibration Analysis Using Simple Physical Models written by John P. Wolf and published by Pearson Education. This book was released on 1994-05-11 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides simple physical models to represent the unbounded soil in time and frequency domain analysis. They do not supplant the more generally applicable rigorous methods, but rather supplement them. The physical models used consists of the following representations: cones based one-dimensional rod theory; lumped-parameter models with frequency-independent springs, dashpots, and masses; and prescribed wave patterns in the horizontal plane. The physical models thus offer a strength-of-materials approach to foundation dynamics.

Book Perspectives on European Earthquake Engineering and Seismology

Download or read book Perspectives on European Earthquake Engineering and Seismology written by Atilla Ansal and published by Springer. This book was released on 2015-08-28 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects 4 keynote and 15 theme lectures presented at the 2nd European Conference on Earthquake Engineering and Seismology (2ECEES), held in Istanbul, Turkey, from August 24 to 29, 2014. The conference was organized by the Turkish Earthquake Foundation - Earthquake Engineering Committee and Prime Ministry, Disaster and Emergency Management Presidency under the auspices of the European Association for Earthquake Engineering (EAEE) and European Seismological Commission (ESC). The book’s nineteen state-of-the-art chapters were written by the most prominent researchers in Europe and address a comprehensive collection of topics on earthquake engineering, as well as interdisciplinary subjects such as engineering seismology and seismic risk assessment and management. Further topics include engineering seismology, geotechnical earthquake engineering, seismic performance of buildings, earthquake-resistant engineering structures, new techniques and technologies, and managing risk in seismic regions. The book also presents the First Professor Inge Lehmann Distinguished Award Lecture given by Prof. Shamita Das in honor of Prof. Dr. Inge Lehmann. The aim of this work is to present the state-of-the art and latest practices in the fields of earthquake engineering and seismology, with Europe’s most respected researchers addressing recent and ongoing developments while also proposing innovative avenues for future research and development. Given its cutting-edge conten t and broad spectrum of topics, the book offers a unique reference guide for researchers in these fields. Audience: This book is of interest to civil engineers in the fields of geotechnical and structural earthquake engineering; scientists and researchers in the fields of seismology, geology and geophysics. Not only scientists, engineers and students, but also those interested in earthquake hazard assessment and mitigation will find in this book the most recent advances.

Book Modelling of Soil Structure Interaction

Download or read book Modelling of Soil Structure Interaction written by V. Kolár and published by Elsevier. This book was released on 2012-12-02 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Distributed in the East European countries, China, Northern Korea, Cuba, Vietnam and Mongolia by Academia, Prague, CzechoslovakiaThis book is based on the efficient subsoil model introduced by the authors in 1977 and applied in the last ten years in the design of foundations. From the designer's point of view, the model considerably reduces the extent of the calculations connected with the numerical analysis of soil-structure interaction. The algorithms presented are geared for use on mini- and personal computers and can be used in any numerical method. A special chapter is devoted to the implementation of the model in the NE-XX finite element program package, illustrated with diagrams, tables and practical examples.Besides presenting the energy definition and general theory of both 2D and 3D model forms, the book also deals with practical problems such as Kirchhoff's and Mindlin's foundation plates, interaction between neighbouring structures, actual values of physical constants of subsoils and natural frequencies and shapes of foundation plates.Today, researchers and engineers can choose from a wide range of soil models, some fairly simple and others very elaborate. However, the gap which has long existed between geomechanical theory and everyday design practice still persists. The present book is intended to suit the practical needs of the designer by introducing an efficient subsoil model in which the surrounding soil is substituted by certain properties of the structure-soil interface. When a more precise solution is required, a more sophisticated model form can be used. Its additional degrees of deformation freedom can better express the behaviour of layered or generally unhomogeneous subsoil. As a result, designers will find that this book goes some way towards bridging the above-mentioned gap between structural design theory and day-to-day practice.

Book Soil Structure Interaction

Download or read book Soil Structure Interaction written by A.S. Cakmak and published by Elsevier. This book was released on 2014-04-11 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite advances in the field of geotechnical earthquake engineering, earthquakes continue to cause loss of life and property in one part of the world or another. The Third International Conference on Soil Dynamics and Earthquake Engineering, Princeton University, Princeton, New Jersey, USA, 22nd to 24th June 1987, provided an opportunity for participants from all over the world to share their expertise to enhance the role of mechanics and other disciplines as they relate to earthquake engineering. The edited proceedings of the conference are published in four volumes. This volume covers: Soil Structure Interaction under Dynamic Loads, Vibration of Machine Foundations, and Base Isolation in Earthquake Engineering. With its companion volumes, it is hoped that it will contribute to the further development of techniques, methods and innovative approaches in soil dynamics and earthquake engineering.

Book Soil Dynamics and Soil Structure Interaction for Resilient Infrastructure

Download or read book Soil Dynamics and Soil Structure Interaction for Resilient Infrastructure written by Tarek Abdoun and published by Springer. This book was released on 2017-07-11 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Infrastructure is the key to creating a sustainable community. It affects our future well-being as well as the economic climate. Indeed, the infrastructure we are building today will shape tomorrow's communities. GeoMEast 2017 created a venue for researchers and practitioners from all over the world to share their expertise to advance the role of innovative geotechnology in developing sustainable infrastructure. This volume focuses on the role of soil-structure-interaction and soil dynamics. It discusses case studies as well as physical and numerical models of geo-structures. It covers: Soil-Structure-Interaction under static and dynamic loads, dynamic behavior of soils, and soil liquefaction. It is hoped that this volume will contribute to further advance the state-of-the-art for the next generation infrastructure. This volume is part of the proceedings of the 1st GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2017.

Book Seismic Soil Foundation Structure Interaction in Urban Environments

Download or read book Seismic Soil Foundation Structure Interaction in Urban Environments written by Nicholas Wade Trombetta and published by . This book was released on 2013 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interactions between a structure, its foundation, and the surrounding soil during an earthquake are referred to as soil-foundation-structure interaction (SFSI). The interactions between multiple structures, and their foundations, through the surrounding soil are collectively known as structure-soil-structure interaction (SSSI). Modern design codes in use in the United States, and abroad, provide guidance for considering SFSI during the seismic design of structural systems. However, these same codes do not provide any guidance for considering SSSI. This situation is a direct result of the current paucity of research into the effects of SSSI on structural performance. This dissertation describes the results of four centrifuge experiments designed to study the influence of SSSI on the seismic performance of building-foundation systems. Following these experiments, numerical models were developed and their efficiency at reproducing measured response evaluated. The experimental program involved two pairs of tests. During Test-1 and Test-2, the SFSI and SSSI-influenced responses of two three-dimensional inelastic frame structures were recorded. During Test-3 and Test-4, the interactions between an inelastic frame structure and an elastic rocking wall arranged in a variety of orientations were recorded. In each of the pair of test series, one configuration was devoted to the evaluation of the response of the model frame structures far from any neighboring structure. Ultimately, the experimental results demonstrate that when structures are placed next to each other, the seismic demands in inelastic frame structures can increase. As such, seismic structural performance may be negatively impacted by SSSI. The tests reveal that footings of buildings placed nearest to other buildings can be physically restrained when loaded towards the other building -- a physical mechanism that had not previously been observed. This asymmetrical physical restraint resulted in a stiffened hysteretic response of footings nearest to adjacent buildings and nominal increases in seismic demands to superstructure elements. It is also demonstrated that wave-based analytical solutions to the SSSI problem alone are not adequate for modeling the interactions between building-foundation systems with highly nonlinear foundation responses. During the numerical phase of this research, available tools for modeling SFSI effects (i.e., absent the effects of neighboring structures) in OpenSees were first refined. The shallowFoundationGen command was redeveloped to give the user greater flexibility. Subsequently, it was demonstrated that the updated modeling technique provides an adequate means to model the experimentally observed coupling of the vertical footing force and overturning moment load combinations for shallow foundations attached to inelastic frame structures. Finally, an available methodology for modeling wave-based SSSI effects was implemented in OpenSees and its capability to predict the experimentally measured seismic demands of an SSSI-influenced inelastic structure was evaluated. Ultimately, it is concluded that the use of foundation-to-foundation connection springs, which are based on wave-based solutions, is insufficient for capturing the seismic response of adjacent structures with highly nonlinear individual SFSI responses.

Book Soil Foundation Structure Interaction

Download or read book Soil Foundation Structure Interaction written by Rolando P. Orense and published by CRC Press. This book was released on 2010-07-20 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soil-Foundation-Structure Interaction contains selected papers presented at the International Workshop on Soil-Foundation-Structure Interaction held in Auckland, New Zealand from 26-27 November 2009. The workshop was the venue for an international exchange of ideas, disseminating information about experiments, numerical models and practical en

Book Seismic Response of Large Embedded Structures and Soil Structure Interaction

Download or read book Seismic Response of Large Embedded Structures and Soil Structure Interaction written by John Li and published by . This book was released on 2019 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: For large relatively stiff structures, soil structure interaction (SSI) plays a major role in dictating the overall seismic response. In light of recent strong seismic excitation affecting such structures, three-dimensional response as well as nonlinear soil behavior are among the areas of increased interest. As such, a series of numerical studies are conducted to shed more light on the involved SSI mechanisms. Amongst those studies is a comparison of the equivalent linear and nonlinear soil formulations in evaluating the seismic response of large embedded structures. Depending on the level of attained nonlinear response, influence of the following modeling considerations is discussed: i) employing the nonlinear versus linear soil formulation, ii) initial own-weight lateral earth pressure stress-state, and iii) the soil-structure interface characteristics. Both formulations generally resulted in remarkably close estimates of structural response. An opportunity to investigate the SSI mechanisms of large embedded structures due to low amplitude shaking was permitted by the availability of seismic data from an instrumented test site at Higashi-dori, Japan. The compiled data set includes the recorded accelerations, for two downhole arrays, and the response of a 1/10th scale twin reactor. The extracted site properties are shown to provide a reasonable match to the recorded data. Using these properties parametric computational studies are conducted to illustrate salient mechanisms associated with the seismic response of such large embedded structural systems. Furthermore, an opportunity to investigate the seismic response of the Fukushima nuclear reactors due to strong shaking was facilitated by data recorded during the magnitude 9.1 Tōhoku earthquake. Linear and nonlinear response of the ground was evaluated using system identification techniques. During the strong shaking, a clear and significant reduction in stiffness was observed within the upper soil strata. Of special interest was the response of Unit 6, which was the most heavily instrumented of the reactors. Response at the base of Unit 6 was compared to that of the nearby downhole array. Amplification of motion along the height of Unit 6 was evaluated, exhibiting the primary role of rocking response.

Book Dynamic Soil Structure Soil Interaction Analysis of Structures in Dense Urban Environments

Download or read book Dynamic Soil Structure Soil Interaction Analysis of Structures in Dense Urban Environments written by Katherine Carys Jones and published by . This book was released on 2013 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: Urban centers are increasingly becoming the locus of enterprise, innovation, and population. This pull toward the center of cities has steadily elevated the importance of these areas. Growth has necessarily spawned new construction. Consequently, modern buildings are often constructed alongside legacy structures, new deep basements are constructed alongside existing shallow foundations, and city blocks composed of a variety of building types result. The underlying soil, foundation, and superstructure of each of these buildings can interact and combine to yield unique seismic responses. Since the seminal work of researchers such as Luco and Contesse (1973) and Wong and Trifunac (1975), researchers have investigated the effects of soil-structure interaction (SSI). This phenomenon refers to the interaction between a single building, its foundation, and the underlying soil during a seismic event. However, as the trend toward urbanization continues, a shortcoming of this conventional SSI approach is that in reality, a structure will almost certainly be located near other structures in metropolitan areas. In this line of research, the interaction of multiple, adjacent buildings during a seismic event, a phenomenon known as structure-soil-structure interaction (SSSI), is investigated. This topic does not yet command the level of attention given to SSI. However, SSSI has the potential to be significantly detrimental or beneficial, depending on the configuration and dynamic properties of the buildings and their foundations in dense urban environments. It is important to understand SSSI effects so that earthquake engineers can make informed decisions about the design and construction of structures in increasingly dense urban areas. As part of a larger, multi-university National Science Foundation (NSF)-supported Network for Earthquake Engineering Simulation Research (NEESR) project, a series of centrifuge experiments were performed at the NEES-supported Center for Geotechnical Modeling (CGM) at the University of California, Davis. Each of these experiments examined aspects of SSI or SSSI through the use of nonlinear structural model buildings situated on different foundations that were supported on deep sand deposits. The centrifuge experiments created a suite of small-scale physical model "case histories" that provided "data" and insight that could be extended through calibrated numerical simulations. The results of the first three centrifuge experiments in the test series (i.e., Test-1, Test-2, and Test-3) were utilized in this dissertation. Numerical analyses are usually only performed for high-profile projects. The effort, expertise and resources required to calibrate and to perform detailed numerical simulations is often prohibitive for typical low- to mid-rise structures. There is a need for a more accessible numerical tool that both geotechnical and structural engineers can utilize to gain insight. In this research, the FLAC finite difference program (Itasca, 2005) with a fully nonlinear effective stress soil constitutive model was used to analyze the centrifuge test-generated "case histories." Test-1 and Test-2 examined SSI and SSSI effects of two moment-resisting frames (MRFs). Test-1 employed a solitary 3-story (prototype) MRF founded on shallow spread footings and a solitary 9-story (prototype) MRF founded on a deep basement (equivalent to 3-stories, prototype) to investigate SSI effects. In Test-2, the 3-story (prototype) and 9-story (prototype) MRFs were placed immediately adjacent to one another to examine SSSI effects. Kinematic interaction effects were primarily observed in these tests. Hence, Test-3 was designed to investigate inertial interaction effects. Three structures were included in Test-3: two MRFs founded on shallow spread footings and one elastic shear-wall structure on a mat foundation. Each of these structures was designed to maximize inertial interaction by: (1) matching the flexible base period of each structure to the soil column to induce resonance, and (2) optimizing structural properties to increase inertial interaction effects. One MRF was positioned alone at one end of the centrifuge model, a SSI condition, and the other MRF and the elastic shear-wall structure were positioned immediately adjacent to each other in the other end of the centrifuge model, a SSSI condition. The rich data set developed through the centrifuge experiments formed the basis of the initial FLAC analyses. A critical aspect of any seismic analysis is the constitutive model used to capture the soil response to cyclic loading. Several soil models were examined during an initial seismic site response analysis. Free-field data from sensors located within the centrifuge soil column were used to quantify the vertical propagation of ground motions through the soil profile. The best model for the dense (Dr = 80%), dry sand used in the centrifuge for Test-1 through Test-3 was a Mohr-Coulomb based model with hysteretic damping, UBCHYST (Naesgaard, 2011). Pseudo-acceleration response spectra and acceleration time histories at the base and at the free-field surface from the centrifuge and the numerical model were compared. The numerical simulations successfully captured the key aspects of the observed seismic site-response for both near-fault pulse-type motions and ordinary motions at a variety of intensities. After successfully capturing the free-field seismic site responses of Test-1 and Test-2, the dynamic responses of the structural models were examined. Each structure was modeled satisfactorily with a two-dimensional, plane-strain numerical model. Engineering design parameters (EDPs) were computed for key structural responses, including (1) transient peak roof drift, (2) residual roof drift, (3) transient peak displacement and (4) peak acceleration at the center of mass of the structure. Additionally, the acceleration time histories and pseudo-acceleration response spectra at the center of mass of the structure for each motion were examined. These metrics were used to compare the numerically estimated dynamic responses with those recorded in the centrifuge experiments. The dynamic response of the 3-story (prototype) MRF estimated with the numerical model was in close agreement with the observed experimental data for both the SSI (Test-1) and SSSI (Test-2) configurations. The more complicated 9-story (prototype) model exhibited greater sensitivity to numerical system inputs, including fixed-base fundamental period and applied structural Rayleigh damping. However, the majority of its recorded dynamic responses were well-matched by the numerical model. The resonant condition created in Test-3 proved challenging to model numerically. The two Test-3 conditions (i.e., SSI and SSSI) were analyzed separately. Significant inertial interaction, including rocking, was observed during the centrifuge test and in the post-processing of data; pseudo-acceleration responses three to five times those recorded in Test-1 and Test-2 were recorded. While the shapes of the pseudo-acceleration response spectra, periods of amplification, and time-histories were well-captured, the numerical model estimated significantly lower amplitudes of the responses for the structures than were observed during the centrifuge test. A sensitivity study was performed to evaluate the influence of several parameters, including (1) the shear wave velocity profile, (2) interface elements, (3) fixed-base fundamental period estimate, and (4) constitutive model parameters. Some of the relative lack of amplification in the numerical simulations was due to over damping in the constitutive model. This was addressed by altering the shear modulus and material damping curves for the soil directly beneath the structures' foundation elements. However, the primary reason for the lower amplitude estimated by the numerical model appeared to be due to the difficulty of capturing the seismic responses of structures in the resonant condition. Shifting the period of any component of the soil-structure system would necessarily have a significant impact on the dynamic response by shifting the system away from resonance. Despite this challenge, the numerical simulations yielded important insights. While the amplitudes of dynamic responses were underestimated for most of the ground motions, the changes in response of the 3-story (prototype) MRF between SSI and SSSI were captured. The elastic shear wall displayed similar behavior; while the spectral shapes were matched for most motions, the amplitudes estimated by the numerical simulations were consistently below those observed in the centrifuge. Comparison of overall change from low- to high-intensity motions or trends from SSI to SSSI could be captured with the model; however, the amplitudes of the responses were generally underestimated. This set of analyses highlighted the challenge of modeling a resonant condition. Additional work is needed to explore the characteristics of the centrifuge when intense input motions are used which are in resonance with the soil in the model. Finally, two prototypical structures were examined. The first, a 3-story MRF, was the model upon which the centrifuge 3-story (prototype) model was based (Ganuza, 2006). Both solitary (SSI) and adjacent (SSSI) configurations were considered for this prototypical 3-story MRF founded on a dense sand soil column. The dynamic responses of the MRF for the solitary (SSI) condition paralleled those observed in the centrifuge experiments. For the considered configurations of adjacent low-rise structures, SSSI effects were found to be either negligible or only slightly beneficial or detrimental for the five ground motions utilized for dynamic analysis. The other prototypical MRF, a 5-story structure, was a simplified version of a typical, medium-rise structure (Ganuza, 2006). The 5-story MRF exhibited dynamic responses consistent with previous work. Amplific.

Book Seismic Soil structure Interaction Effects in Tall Buildings Considering Nonlinear inelastic Behaviors

Download or read book Seismic Soil structure Interaction Effects in Tall Buildings Considering Nonlinear inelastic Behaviors written by Jaime A. Mercado and published by . This book was released on 2021 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soil-structure interaction (SSI) effects are relevant for the seismic analysis of tall buildings on shallow foundations since the dynamic behavior of structures is highly affected by the interaction between the superstructure and supporting soils. As part of earthquake-resistant designs of buildings, considering SSI effects in the analysis provides more realistic estimates of its performance during a seismic event, particularly when both the structure and soil undergo large demands that can compromise serviceability. Oversimplifications of structural or soil modeling in the analysis introduces variability and biases in the computed seismic response.

Book Physical and Numerical Simulations of Soil Structure Interaction

Download or read book Physical and Numerical Simulations of Soil Structure Interaction written by Chandrakanth Bolisetti and published by . This book was released on 2011 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the seismic performance assessment of new and retrofit structures it is important to consider the effects of soil-structure interaction. Several numerical methods of varying complexity and accuracy have been used to evaluate these effects in practice, including the numerical programs, SHAKE and SASSI, which perform ground response analysis using an equivalent linear method, and soil-structure interaction analysis using a frequency-domain substructuring method, respectively. This study involves the assessment of these programs using a database of building responses recorded from a centrifuge test performed at the NEES@UCDavis centrifuge facility, as a part of the NEES City Block project. The centrifuge test involves shaking of two isolated, small-scale building models placed on dry Nevada sand, whose counterparts at the prototype scale are representative of typical low- to medium-rise SMRF buildings situated in downtown Los Angeles. Seventeen ground motions with increasing damage potential are applied to the models. Three of these seventeen excitations are simulated using the programs SHAKE and SASSI to calculate the free-field response of the soil, and the response of the soil-structure systems, respectively. These three ground motions include a low, medium and high intensity motion. Soil-structure interaction effects are calculated from the responses, and a comparison is made between the numerical results and experimental observations. The numerical predictions for the low intensity motion are good. For the higher intensity motions, the nonlinear response of both the soil and the structures was only captured approximately. SSI calculations are also carried out using the simplified procedures of ASCE 7-10 and FEMA 440, and results are compared with the experimental observations.