Download or read book Quantum Mechanics in Chemistry written by Jack Simons and published by Oxford University Press on Demand. This book was released on 1997 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for beginning graduate students and advanced undergraduates in all areas of chemistry, this text offers great flexibility. It is unique in that it combines both introductory and modern quantum chemistry in a single book. The introductory material is covered in less detail, allowing the instructor to extend the coverage into areas of greater importance, including introductions to molecular spectroscopy and chemical dynamics and a very thorough group of chapters on computational chemistry as applied to electronic structures. A large number of exercises, problems, and solutions, and a disk of text-related computer programs are also included, further enhancing the utility value of the text.
Download or read book Introduction to Quantum Mechanics with Applications to Chemistry written by Linus Pauling and published by Courier Corporation. This book was released on 2012-06-08 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Classic undergraduate text explores wave functions for the hydrogen atom, perturbation theory, the Pauli exclusion principle, and the structure of simple and complex molecules. Numerous tables and figures.
Download or read book Problems and Solutions in Quantum Chemistry and Physics written by Charles S. Johnson and published by Courier Corporation. This book was released on 2013-01-18 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unusually varied problems, with detailed solutions, cover quantum mechanics, wave mechanics, angular momentum, molecular spectroscopy, scattering theory, more. 280 problems, plus 139 supplementary exercises.
Download or read book Physical Chemistry Quantum Mechanics written by Horia Metiu and published by Garland Science. This book was released on 2006-02-21 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a new undergraduate textbook on physical chemistry by Horia Metiu published as four separate paperback volumes. These four volumes on physical chemistry combine a clear and thorough presentation of the theoretical and mathematical aspects of the subject with examples and applications drawn from current industrial and academic research. By using the computer to solve problems that include actual experimental data, the author is able to cover the subject matter at a practical level. The books closely integrate the theoretical chemistry being taught with industrial and laboratory practice. This approach enables the student to compare theoretical projections with experimental results, thereby providing a realistic grounding for future practicing chemists and engineers. Each volume of Physical Chemistry includes Mathematica¬ and Mathcad¬ Workbooks on CD-ROM. Metiu's four separate volumes-Thermodynamics, Statistical Mechanics, Kinetics, and Quantum Mechanics-offer built-in flexibility by allowing the subject to be covered in any order. These textbooks can be used to teach physical chemistry without a computer, but the experience is enriched substantially for those students who do learn how to read and write Mathematica¬ or Mathcad¬ programs. A TI-89 scientific calculator can be used to solve most of the exercises and problems.
Download or read book Neither Physics nor Chemistry written by Kostas Gavroglu and published by MIT Press. This book was released on 2011-10-07 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: The evolution of a discipline at the intersection of physics, chemistry, and mathematics. Quantum chemistry—a discipline that is not quite physics, not quite chemistry, and not quite applied mathematics—emerged as a field of study in the 1920s. It was referred to by such terms as mathematical chemistry, subatomic theoretical chemistry, molecular quantum mechanics, and chemical physics until the community agreed on the designation of quantum chemistry. In Neither Physics Nor Chemistry, Kostas Gavroglu and Ana Simões examine the evolution of quantum chemistry into an autonomous discipline, tracing its development from the publication of early papers in the 1920s to the dramatic changes brought about by the use of computers in the 1970s. The authors focus on the culture that emerged from the creative synthesis of the various traditions of chemistry, physics, and mathematics. They examine the concepts, practices, languages, and institutions of this new culture as well as the people who established it, from such pioneers as Walter Heitler and Fritz London, Linus Pauling, and Robert Sanderson Mulliken, to later figures including Charles Alfred Coulson, Raymond Daudel, and Per-Olov Löwdin. Throughout, the authors emphasize six themes: epistemic aspects and the dilemmas caused by multiple approaches; social issues, including academic politics, the impact of textbooks, and the forging of alliances; the contingencies that arose at every stage of the developments in quantum chemistry; the changes in the field when computers were available to perform the extraordinarily cumbersome calculations required; issues in the philosophy of science; and different styles of reasoning.
Download or read book Principles of Quantum Mechanics written by Donald D. Fitts and published by Cambridge University Press. This book was released on 1999-08-26 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a rigorous mathematical account of the principles of quantum mechanics, in particular as applied to chemistry and chemical physics. Applications are used as illustrations of the basic theory. The first two chapters serve as an introduction to quantum theory, although it is assumed that the reader has been exposed to elementary quantum mechanics as part of an undergraduate physical chemistry or atomic physics course. Following a discussion of wave motion leading to Schrödinger's wave mechanics, the postulates of quantum mechanics are presented along with essential mathematical concepts and techniques. The postulates are rigorously applied to the harmonic oscillator, angular momentum, the hydrogen atom, the variation method, perturbation theory, and nuclear motion. Modern theoretical concepts such as hermitian operators, Hilbert space, Dirac notation, and ladder operators are introduced and used throughout. This text is appropriate for beginning graduate students in chemistry, chemical physics, molecular physics and materials science.
Download or read book Quantum Mechanics in Chemistry written by Melvin W. Hanna and published by Addison Wesley Longman. This book was released on 1969 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Includes bibliographical references.
Download or read book Quantum Mechanics of Molecular Rate Processes written by Raphael D. Levine and published by Courier Corporation. This book was released on 2011-11-30 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This survey of applications of the theory of collisions and rate processes to molecular problems explores collisions of molecules with internal structure, generalized Ehrenfest theorem, theory of reactive collisions, and role of symmetry. It also reviews partitioning technique, equivalent potentials and quasibound states, theory of direct reactions, more. 1969 edition.
Download or read book Quantum Mechanics for Chemists written by David O. Hayward and published by Royal Society of Chemistry. This book was released on 2002 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to provide chemistry undergraduates with a basic understanding of the principles of quantum mechanics.
Download or read book Ideas of Quantum Chemistry written by Lucjan Piela and published by Elsevier. This book was released on 2020-01-11 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ideas of Quantum Chemistry, Volume One: From Quantum Physics to Chemistry shows how quantum mechanics is applied to molecular sciences to provide a theoretical foundation. Organized into digestible sections and written in an accessible style, it answers questions, highlighting the most important conclusions and essential mathematical formulae. Beginning with an introduction to the magic of quantum mechanics, the book goes on to review such key topics as the Schrödinger Equation, exact solutions, and fundamental approximate methods. The crucial concept of molecular shape is then discussed, followed by the motion of nuclei and the orbital model of electronic structure. This updated volume covers the latest developments in the field and can be used either on its own as a detailed introduction to quantum chemistry or in combination with Volume Two to give a complete overview of the field. - Provides fully updated coverage on an extensive range of both foundational and complex topics - Uses an innovative structure to emphasize relationships between topics and help readers tailor their own path through the book - Includes new sections on Time-Energy Uncertainty and Virial Theorem
Download or read book Chemistry Quantum Mechanics and Reductionism written by H. Primas and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to provide a deeper insight into the modern theories of molecular matter. It incorporates the most important developments which have taken place during the last decades and reflects the modern trend to abstraction. At the present state of the art we have acquired a fairly good knowledge of "how to. compute" small molecules us ing the methods of quantum chemistry. Yet, in spite of many statements to the contrary and many superficial discussions, the theoretical basis of chemistry and biology is not safely in our hands. It is all but impossible to summarize the modern developments of the theory of matter in nontechnical language. But I hope that I can give some feeling for the problems, the intellectual excitements and the wor ries of some theoreticians. I know very well that such an enterprise is a dangerous adventure and that one says that a clever scientist should take care of his reputation by barricading himself behind the safe wall of his speciality. This volume is not meant to be a textbook; in many respects it has complementary goals. For good and bad reasons, most textbooks ignore the historical and philosophical aspects and go ahead on the basis of crude simplifications; many even lie like the devil and do not shrink from naive indoctrination. Some sections of this book can be read as commentaries on our standard texts, they are intended to stir the waters with controversy.
Download or read book Introduction to Quantum Mechanics written by S.M. Blinder and published by Academic Press. This book was released on 2020-10-09 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Quantum Mechanics, 2nd Edition provides an accessible, fully updated introduction to the principles of quantum mechanics. It outlines the fundamental concepts of quantum theory, discusses how these arose from classic experiments in chemistry and physics, and presents the quantum-mechanical foundations of current scientific developments.Beginning with a solid introduction to the key principles underpinning quantum mechanics in Part 1, the book goes on to expand upon these in Part 2, where fundamental concepts such as molecular structure and chemical bonding are discussed. Finally, Part 3 discusses applications of this quantum theory across some newly developing applications, including chapters on Density Functional Theory, Statistical Thermodynamics and Quantum Computing.Drawing on the extensive experience of its expert author, Introduction to Quantum Mechanics, 2nd Edition is a lucid introduction to the principles of quantum mechanics for anyone new to the field, and a useful refresher on fundamental knowledge and latest developments for those varying degrees of background. - Presents a fully updated accounting that reflects the most recent developments in Quantum Theory and its applications - Includes new chapters on Special Functions, Density Functional Theory, Statistical Thermodynamics and Quantum Computers - Presents additional problems and exercises to further support learning
Download or read book A Textbook of Physical Chemistry Volume 1 written by Mandeep Dalal and published by Dalal Institute. This book was released on 2018-01-01 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced-level textbook of physical chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Physical Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Quantum Mechanics – I: Postulates of quantum mechanics; Derivation of Schrodinger wave equation; Max-Born interpretation of wave functions; The Heisenberg’s uncertainty principle; Quantum mechanical operators and their commutation relations; Hermitian operators (elementary ideas, quantum mechanical operator for linear momentum, angular momentum and energy as Hermition operator); The average value of the square of Hermitian operators; Commuting operators and uncertainty principle(x & p; E & t); Schrodinger wave equation for a particle in one dimensional box; Evaluation of average position, average momentum and determination of uncertainty in position and momentum and hence Heisenberg’s uncertainty principle; Pictorial representation of the wave equation of a particle in one dimensional box and its influence on the kinetic energy of the particle in each successive quantum level; Lowest energy of the particle. Chapter 2. Thermodynamics – I: Brief resume of first and second Law of thermodynamics; Entropy changes in reversible and irreversible processes; Variation of entropy with temperature, pressure and volume; Entropy concept as a measure of unavailable energy and criteria for the spontaneity of reaction; Free energy, enthalpy functions and their significance, criteria for spontaneity of a process; Partial molar quantities (free energy, volume, heat concept); Gibb’s-Duhem equation. Chapter 3. Chemical Dynamics – I: Effect of temperature on reaction rates; Rate law for opposing reactions of Ist order and IInd order; Rate law for consecutive & parallel reactions of Ist order reactions; Collision theory of reaction rates and its limitations; Steric factor; Activated complex theory; Ionic reactions: single and double sphere models; Influence of solvent and ionic strength; The comparison of collision and activated complex theory. Chapter 4. Electrochemistry – I: Ion-Ion Interactions: The Debye-Huckel theory of ion- ion interactions; Potential and excess charge density as a function of distance from the central ion; Debye Huckel reciprocal length; Ionic cloud and its contribution to the total potential; Debye - Huckel limiting law of activity coefficients and its limitations; Ion-size effect on potential; Ion-size parameter and the theoretical mean-activity coefficient in the case of ionic clouds with finite-sized ions; Debye - Huckel-Onsager treatment for aqueous solutions and its limitations; Debye-Huckel-Onsager theory for non-aqueous solutions; The solvent effect on the mobality at infinite dilution; Equivalent conductivity (Λ) vs. concentration c 1/2 as a function of the solvent; Effect of ion association upon conductivity (Debye- Huckel - Bjerrum equation). Chapter 5. Quantum Mechanics – II: Schrodinger wave equation for a particle in a three dimensional box; The concept of degeneracy among energy levels for a particle in three dimensional box; Schrodinger wave equation for a linear harmonic oscillator & its solution by polynomial method; Zero point energy of a particle possessing harmonic motion and its consequence; Schrodinger wave equation for three dimensional Rigid rotator; Energy of rigid rotator; Space quantization; Schrodinger wave equation for hydrogen atom, separation of variable in polar spherical coordinates and its solution; Principle, azimuthal and magnetic quantum numbers and the magnitude of their values; Probability distribution function; Radial distribution function; Shape of atomic orbitals (s,p & d). Chapter 6. Thermodynamics – II: Classius-Clayperon equation; Law of mass action and its thermodynamic derivation; Third law of thermodynamics (Nernest heat theorem, determination of absolute entropy, unattainability of absolute zero) and its limitation; Phase diagram for two completely miscible components systems; Eutectic systems, Calculation of eutectic point; Systems forming solid compounds Ax By with congruent and incongruent melting points; Phase diagram and thermodynamic treatment of solid solutions. Chapter 7. Chemical Dynamics – II: Chain reactions: hydrogen-bromine reaction, pyrolysis of acetaldehyde, decomposition of ethane; Photochemical reactions (hydrogen - bromine & hydrogen -chlorine reactions); General treatment of chain reactions (ortho-para hydrogen conversion and hydrogen - bromine reactions); Apparent activation energy of chain reactions, Chain length; Rice-Herzfeld mechanism of organic molecules decomposition(acetaldehyde); Branching chain reactions and explosions ( H2-O2 reaction); Kinetics of (one intermediate) enzymatic reaction : Michaelis-Menton treatment; Evaluation of Michaelis 's constant for enzyme-substrate binding by Lineweaver-Burk plot and Eadie-Hofstae methods; Competitive and non-competitive inhibition. Chapter 8. Electrochemistry – II: Ion Transport in Solutions: Ionic movement under the influence of an electric field; Mobility of ions; Ionic drift velocity and its relation with current density; Einstein relation between the absolute mobility and diffusion coefficient; The Stokes- Einstein relation; The Nernst -Einstein equation; Walden’s rule; The Rate-process approach to ionic migration; The Rate process equation for equivalent conductivity; Total driving force for ionic transport, Nernst - Planck Flux equation; Ionic drift and diffusion potential; the Onsager phenomenological equations; The basic equation for the diffusion; Planck-Henderson equation for the diffusion potential.
Download or read book Molecular Physics and Elements of Quantum Chemistry written by Hermann Haken and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces the molecular and quantum chemistry needed to understand the physical properties of molecules and their chemical bonds. It follows the authors' earlier textbook "The Physics of Atoms and Quanta" and presents both experimental and theoretical fundamentals for students in physics and physical and theoretical chemistry. The new edition treats new developments in areas such as high-resolution two-photon spectroscopy, ultrashort pulse spectroscopy, photoelectron spectroscopy, optical investigation of single molecules in condensed phase, electroluminescence, and light-emitting diodes.
Download or read book Molecular Quantum Mechanics written by Peter W. Atkins and published by Oxford University Press. This book was released on 2011 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text unravels those fundamental physical principles which explain how all matter behaves. It takes us from the foundations of quantum mechanics, through quantum models of atomic, molecular, and electronic structure, and on to discussions of spectroscopy, and the electronic and magnetic properties of molecules.
Download or read book Principles and Applications of Quantum Chemistry written by V.P. Gupta and published by Academic Press. This book was released on 2015-10-15 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles and Applications of Quantum Chemistry offers clear and simple coverage based on the author's extensive teaching at advanced universities around the globe. Where needed, derivations are detailed in an easy-to-follow manner so that you will understand the physical and mathematical aspects of quantum chemistry and molecular electronic structure. Building on this foundation, this book then explores applications, using illustrative examples to demonstrate the use of quantum chemical tools in research problems. Each chapter also uses innovative problems and bibliographic references to guide you, and throughout the book chapters cover important advances in the field including: Density functional theory (DFT) and time-dependent DFT (TD-DFT), characterization of chemical reactions, prediction of molecular geometry, molecular electrostatic potential, and quantum theory of atoms in molecules. - Simplified mathematical content and derivations for reader understanding - Useful overview of advances in the field such as Density Functional Theory (DFT) and Time-Dependent DFT (TD-DFT) - Accessible level for students and researchers interested in the use of quantum chemistry tools
Download or read book Basic Molecular Quantum Mechanics written by Steven A. Adelman and published by CRC Press. This book was released on 2021-08-01 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics is a general theory of the motions, structures, properties, and behaviors of particles of atomic and subatomic dimensions. While quantum mechanics was created in the first third of the twentieth century by a handful of theoretical physicists working on a limited number of problems, it has further developed and is now applied by a great number of people working on a vast range of problems in wide areas of science and technology. Basic Molecular Quantum Mechanics introduces quantum mechanics by covering the fundamentals of quantum mechanics and some of its most important chemical applications: vibrational and rotational spectroscopy and electronic structure of atoms and molecules. Thoughtfully organized, the author builds up quantum mechanics systematically with each chapter preparing the student for the more advanced chapters and complex applications. Additional features include the following: This book presents rigorous and precise explanations of quantum mechanics and mathematical proofs. It contains qualitative discussions of key concepts with mathematics presented in the appendices. It provides problems and solutions at the end of each chapter to encourage understanding and application. This book is carefully written to emphasize its applications to chemistry and is a valuable resource for advanced undergraduates and beginning graduate students specializing in chemistry, in related fields such as chemical engineering and materials science, and in some areas of biology.