EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Physical Characterisation of Polymer fullerene Blends for Organic Photovoltaic Devices

Download or read book Physical Characterisation of Polymer fullerene Blends for Organic Photovoltaic Devices written by Paul Edward Hopkinson and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Synthesis and Characterisation of Non Fullerene Electron Acceptors for Organic Photovoltaics

Download or read book Synthesis and Characterisation of Non Fullerene Electron Acceptors for Organic Photovoltaics written by Sarah Holliday and published by Springer. This book was released on 2018-03-22 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reports on the design, synthesis and characterization of new small molecule electron acceptors for polymer solar cells. Starting with a detailed introduction to the science behind polymer solar cells, the author then goes on to review the challenges and advances made in developing non-fullerene acceptors so far. In the main body of the book, the author describes the design principles and synthetic strategy for a new family of acceptors, including detailed synthetic procedures and molecular modeling data used to predict physical properties. An indepth characterization of the photovoltaic performance, with transient absorption spectroscopy (TAS), photo-induced charge extraction, and grazing incidence X-ray diffraction (GIXRD) is also included, and the author uses this data to relate material properties and device performance. This book provides a useful overview for researchers beginning a project in this or related areas.

Book Optoelectronic Properties of Organic Semiconductors

Download or read book Optoelectronic Properties of Organic Semiconductors written by Nasim Zarrabi and published by Springer Nature. This book was released on 2022-02-26 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on organic semiconductors with particular attention paid to their use as photovoltaic devices. It addresses a fundamental and hitherto overlooked concept in the field of organic optoelectronics, namely the role that sub-gap states play in the performance of organic semiconducting devices. From a technological point of view, organic semiconductor-based devices are of significant interest due to their lightweight, ease of processability, conformal flexibility, and potentially low cost and low embodied energy production. Motivated by these rather unique selling points, the performance of organic semiconductors has been a subject of multidisciplinary study for more than 60 years with steady progress in applications such as solar cells, transistors, light emitting diodes, and various sensors. The book begins with a review of the main electro-optical phenomena in organic solar cells and presents a new method for measuring exciton diffusion lengths based on a low-quencher-content device structure. Furthermore, the book reveals how mid-gap trap states are a universal feature in organic semiconductor donor–acceptor blends, unexpectedly contributing to charge generation and recombination, and having profound impact on the thermodynamic limit of organic photovoltaic devices. Featuring cutting-edge experimental observations supported with robust and novel theoretical arguments, this book delivers important new insight as to the underlying dynamics of exciton generation and diffusion, charge transfer state dissociation, and indeed the ultimate fate of photogenerated free carriers.

Book Fundamentals of Conjugated Polymer Blends  Copolymers and Composites

Download or read book Fundamentals of Conjugated Polymer Blends Copolymers and Composites written by Parveen Saini and published by John Wiley & Sons. This book was released on 2015-04-30 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their discovery in 1977, the evolution of conducting polymers has revolutionized modern science and technology. These polymers enjoy a special status in the area of materials science yet they are not as popular among young readers or common people when compared to other materials like metals, paper, plastics, rubber, textiles, ceramics and composites like concrete. Most importantly, much of the available literature in the form of papers, specific review articles and books is targeted either at advanced readers (scientists / technologists / engineers / senior academicians) or for those who are already familiar with the topic (doctoral / postdoctoral scholars). For a beginner or even school / college students, such compilations are bit difficult to access / digest. In fact, they need proper introduction to the topic of conducting polymers including their discovery, preparation, properties, applications and societal impact, using suitable examples and already known principles/knowledge/phenomenon. Further, active participation of readers in terms of "question & answers", "fill-in-the-blanks", "numerical" along with suitable answer key is necessary to maintain the interest and to initiate the "thought process". The readers also need to know about the drawbacks and any hazards of such materials. Therefore, I believe that a comprehensive source on the science / technology of conducting polymers which maintains a link between grass root fundamentals and state-of-the-art R&D is still missing from the open literature.

Book Photophysics of Polymer

    Book Details:
  • Author : Arun Aby Paraecattil
  • Publisher :
  • Release : 2013
  • ISBN :
  • Pages : pages

Download or read book Photophysics of Polymer written by Arun Aby Paraecattil and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Process structure property relationship of polymer fullerene bulk heterojunction films for organic solar cells

Download or read book Process structure property relationship of polymer fullerene bulk heterojunction films for organic solar cells written by Benjamin Schmidt-Hansberg and published by Cuvillier Verlag. This book was released on 2012-05-09 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photovoltaic (PV) is attracting increasing interest as an important contribution to renewable energy supply. Organic photovoltaic (OPV) is a comparable young PV technology with a great potential towards low cost solar power. This is due to the intrinsic advantage of the incorporated organic semiconductors which are soluble. Solution processing allows high throughput coating and printing processes. Hence, energy intensive high temperature and vacuum steps can be avoided which reduces the fabrication costs and keeps energy payback times low. The performance of organic solar cells strongly depends on the structure of the solution cast photoactive layer which comprises a polymer-fullerene blend. The blend structure evolves during the film drying step which has been studied in this thesis. Starting point of this work was the hypothesis that drying process parameters are suitable for systematically tuning the structure formation during drying of solution cast polymer-fullerene films in order to generate optimized structures with improved photovoltaic performance. For the evaluation of this hypothesis the structure formation of the polymer-fullerene system Poly(3-hexylthiophene-2,5-diyl):[6,6]-Phenyl C61-butyric acid methyl ester (P3HT:PCBM) was investigated incorporating i) thin film drying kinetics, ii) phase behavior of polymer-fullerene solutions, iii) structure formation and iv) the drying process-structure-property relationship of solar cells. The generality of the obtained results has been studied in comparison with the behavior of Poly{[4,40-bis(2-ethylhexyl)dithieno(3,2-b;20,30-d)silole]-2,6-diyl-alt-(2,1,3-benzothidiazole)-4,7-diyl} (PSBTBT). i) Within this thesis a dedicated coating and drying setup was developed which afforded precisely defined coating and drying process conditions as prerequisite for all obtained results. For the first time, the drying behavior of finally a few hundred nanometer thin films could be investigated at five measurement positions with laser reflectometry simultaneously. This allowed the elaboration of a spatially resolved numerical thin film drying model. ii) In conjunction with the measurement and simulation of the evolution of film composition it was required to determine important instants of phase transitions such as solubility limits. Therefore the binodal region of P3HT solutions has been determined in the temperature range of 0°C-60°C. Within the unstable region P3HT solutions phase separate into a sol and a gel phase. The fullerene PCBM exhibits only a single solubility limit. iii) In order to correlate the expected phase transitions according to the phase diagrams with the real structure formation, the above mentioned coating and drying setup was combined with synchrotron based in situ grazing incidence X-ray diffraction (GIXD) measurements. This gave unique insights into the mechanisms and dynamics of polymer-fullerene blend crystallization. After reaching P3HT solubility the crystallization proceeded with well-oriented interface-induced P3HT nucleation followed by P3HT crystal growth with increasing orientation distribution of the crystallites and PCBM aggregation in the final drying period. Furthermore strong polymer-fullerene interaction forces could be derived. By increasing the PCBM fraction it could be shown for the 1:2 P3HT:PCBM ratio that PCBM molecules brake the (020) π-π-stacking of P3HT lamellae which signifies a dramatic loss of hole mobility and consequently reduced device performance. It is further notable that increasing drying temperatures reduce the amount of (020) π-π-stacked P3HT molecules but lead to an increased amount of P3HT (100) crystallinity. Hence, drying temperature determines the preferred direction of crystal growth. iv) Besides a finer degree of phase separation, reduced drying temperatures also cause a higher amount of π-π-stacked polymers, longer effective polymer conjugation length, increased amount of vertical charge transport pathways and an increasingly rough topography due to larger polymer aggregates. Jointly this leads to improved power conversion efficiency at lower drying temperatures. Based on the elaborated knowledge a strategy for a 40% reduction of drying time with only small drawbacks in solar cell performance could be developed. Finally it was important to investigate the transferability of the obtained knowledge to other material systems. PSBTBT:PC71BM blends show similarities to that of P3HT:PCBM with partly interface induced polymer nucleation and subsequent fullerene aggregation in the final drying stage. The kinetics of molecular ordering however proceed fast enough such that the drying process under the investigated conditions cannot limit the structure formation. Hence, P3HT:PCBM is a suitable model system due to its sensitivity to many process parameters. According to the process influence on novel materials the results of this thesis can serve as a source for appropriate process strategies.

Book Theoretical and Computational Chemistry

Download or read book Theoretical and Computational Chemistry written by Iwona Gulaczyk and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-06-08 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the applications of computational chemistry ranging from the pharmaceutical industry and molecular structure determination to spectroscopy and astrophysics. The authors detail how calculations can be used to solve a wide range of practical challenges encountered in research and industry.

Book Organic Photovoltaics

Download or read book Organic Photovoltaics written by Christoph Brabec and published by John Wiley & Sons. This book was released on 2011-09-22 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing complementary viewpoints from academia as well as technology companies, this book covers the three most important aspects of successful device design: materials, device physics, and manufacturing technologies. It also offers an insight into commercialization concerns, such as packaging technologies, system integration, reel-to-reel large scale manufacturing issues and production costs. With an introduction by Nobel Laureate Alan Heeger.

Book Organic Solar Cells

    Book Details:
  • Author : Qiquan Qiao
  • Publisher : CRC Press
  • Release : 2017-12-19
  • ISBN : 1351831216
  • Pages : 510 pages

Download or read book Organic Solar Cells written by Qiquan Qiao and published by CRC Press. This book was released on 2017-12-19 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current energy consumption mainly depends on fossil fuels that are limited and can cause environmental issues such as greenhouse gas emissions and global warming. These factors have stimulated the search for alternate, clean, and renewable energy sources. Solar cells are some of the most promising clean and readily available energy sources. Plus, the successful utilization of solar energy can help reduce the dependence on fossil fuels. Recently, organic solar cells have gained extensive attention as a next-generation photovoltaic technology due to their light weight, mechanical flexibility, and solution-based cost-effective processing. Organic Solar Cells: Materials, Devices, Interfaces, and Modeling provides an in-depth understanding of the current state of the art of organic solar cell technology. Encompassing the full spectrum of organic solar cell materials, modeling and simulation, and device physics and engineering, this comprehensive text: Discusses active layer, interfacial, and transparent electrode materials Explains how to relate synthesis parameters to morphology of the photoactive layer using molecular dynamics simulations Offers insight into coupling morphology and interfaces with charge transport in organic solar cells Explores photoexcited carrier dynamics, defect states, interface engineering, and nanophase separation Covers inorganic–organic hybrids, tandem structure, and graphene-based polymer solar cells Organic Solar Cells: Materials, Devices, Interfaces, and Modeling makes an ideal reference for scientists and engineers as well as researchers and students entering the field from broad disciplines including chemistry, material science and engineering, physics, nanotechnology, nanoscience, and electrical engineering.

Book Multi Frequency EPR Spectroscopy of Conjugated Polymers and Their Nanocomposites

Download or read book Multi Frequency EPR Spectroscopy of Conjugated Polymers and Their Nanocomposites written by Victor I. Krinichnyi and published by CRC Press. This book was released on 2016-10-14 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conjugated polymeric materials and their nanocomposites are widely used for the creation of alternative sources of renewable energy, cell phone screens, mobile gadgets, video players and OLED-TV, as well as organic diodes, transistors, sensors, etc. with field-dependent and spin-assisted electronic properties. Multifrequency EPR Spectroscopy methods can help researchers optimize their structural, magnetic and electronic properties for the creation of more efficient molecular devices. This book will acquaint the reader with the basic properties of conjugated polymers, the fundamentals of EPR Spectroscopy, and the information that can be obtained at different wavebands of EPR spectroscopy.

Book Solution Processable Components for Organic Electronic Devices

Download or read book Solution Processable Components for Organic Electronic Devices written by Beata Luszczynska and published by John Wiley & Sons. This book was released on 2019-09-16 with total page 686 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.

Book Self assembly of Semiconducting Polymers and Fullerenes for Photovoltaic Applications

Download or read book Self assembly of Semiconducting Polymers and Fullerenes for Photovoltaic Applications written by Rachel Colleen Huber and published by . This book was released on 2014 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis we present methodologies for control and characterization of nanoscale film morphology and self-assembly in systems containing semiconducting polymers and fullerenes for use in photovoltaic devices. These materials are of interest to the photovoltaic community due to their facile processing and relative low cost. Organic photovoltaics consist of a photo- absorbing electron-donating polymer and an electron-accepting fullerene, upon exposure to light an electron-hole pair (excition) is formed. This exciton can travel 10-20 nm before if finds a polymer-fullerene interface or it will recombine. Due to this small exciton diffusion length, the study of the nanoscale morphology is pivotal in understanding and improving device properties. Here we first explore how the crystallinity of different molecular components of a blended film affects device performance. Using grazing incidence wide-angle X-ray scattering (GIWAXS), we find that different device fabrication techniques are optimized by polymers with different crystallinities. Additionally we studied all-polymer solar films through GIWAXS, which shows that these blends are approximately an addition of the two polymers; however, shifts of the polymer peaks elucidated how the polymers are mixing. To further these X-ray studies we used time-resolved microwave conductivity to study the local mobilities of fullerenes. In the second half of this thesis, we examine a hydrogel network formed from a charged amphiphilic polymer, poly(fluorene-alt-thiophene) (PFT). This polymer self-assembles into rod- like structures in water and also shows improved conductivity in dried films due to its assembled structure. Here we use small angle X-ray scattering (SAXS) and TEM to confirm the nanoscale rod-like assembly, and employ rheology to study how the three dimensional network is held together. Finally, we examine photophysical changes upon the addition of a water-soluble fullerene, C60-N, N-dimethylpyrrolidinium iodide, to PFT, as a step towards water-processable organic solar cells. Photoexcitation of aqueous assemblies of cationic polymers and fullerenes result in the formation of free charge carriers (polarons). These separated charge carriers are stable for days to weeks, which is unprecedented in polymer/fullerene assemblies. We have shown that through these fundamental studies of device architectures and intelligent molecular design, self-assembly has the power to provide a pathway towards improved photovoltaic device properties.

Book Polymers At Nanoscale  In 2 Volumes

Download or read book Polymers At Nanoscale In 2 Volumes written by Jie He and published by World Scientific. This book was released on 2023-11-03 with total page 675 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making polymers into nanoparticles as an essential step in polymer solution processing is of key importance for many applications of polymers. This book seeks to uncover the basics and recent advances in polymer nanoparticles, including polymer synthesis, self-assembly, properties, and applications. It encompasses the various preparation methods of polymer nanoparticles, broadly ranged from single chain collapse to polymerization methods and solution self-assembly. It showcases a wide range of advanced applications of polymer nanoparticles in several fields that include pharmaceutics (drug and nucleotide delivery), biomedicals (bioimaging, diagnosis, and therapeutics), energy (batteries and solar cells) and environmental (catalysis and water purification).This book is enriched with a comprehensive range of content, incorporating synthesis, properties and applications in polymeric nanoparticles that will serve as a suitable beginner guide and survey book in polymer nanomaterials, as well as a useful tool for graduate students, scientists and practitioners in related fields or industries such as chemistry, materials science and engineering, nanomaterials, energy storage and conversion devices, and biomedicine.

Book Encyclopedia of Physical Organic Chemistry  6 Volume Set

Download or read book Encyclopedia of Physical Organic Chemistry 6 Volume Set written by Zerong Wang and published by John Wiley & Sons. This book was released on 2017-04-17 with total page 4542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Winner of 2018 PROSE Award for MULTIVOLUME REFERENCE/SCIENCE This encyclopedia offers a comprehensive and easy reference to physical organic chemistry (POC) methodology and techniques. It puts POC, a classical and fundamental discipline of chemistry, into the context of modern and dynamic fields like biochemical processes, materials science, and molecular electronics. Covers basic terms and theories into organic reactions and mechanisms, molecular designs and syntheses, tools and experimental techniques, and applications and future directions Includes coverage of green chemistry and polymerization reactions Reviews different strategies for molecular design and synthesis of functional molecules Discusses computational methods, software packages, and more than 34 kinds of spectroscopies and techniques for studying structures and mechanisms Explores applications in areas from biology to materials science The Encyclopedia of Physical Organic Chemistry has won the 2018 PROSE Award for MULTIVOLUME REFERENCE/SCIENCE. The PROSE Awards recognize the best books, journals and digital content produced by professional and scholarly publishers. Submissions are reviewed by a panel of 18 judges that includes editors, academics, publishers and research librarians who evaluate each work for its contribution to professional and scholarly publishing. You can find out more at: proseawards.com Also available as an online edition for your library, for more details visit Wiley Online Library

Book Materials for Sustainable Energy

Download or read book Materials for Sustainable Energy written by Vincent Dusastre and published by World Scientific. This book was released on 2011 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: The search for cleaner, cheaper, smaller and more efficient energy technologies has to a large extent been motivated by the development of new materials. The aim of this collection of articles is therefore to focus on what materials-based solutions can offer and show how the rationale design and improvement of their physical and chemical properties can lead to energy-production alternatives that have the potential to compete with existing technologies. In terms of alternative means to generate electricity that utilize renewable energy sources, the most dramatic breakthroughs for both mobile (i.e., transportation) and stationary applications are taking place in the fields of solar and fuel cells. And from an energy-storage perspective, exciting developments can be seen emerging from the fields of rechargeable batteries and hydrogen storage.

Book Controlling the Morphology of Polymer and Fullerene Blends in Organic Photovoltaics Through Sequential Processing and Self Assembly

Download or read book Controlling the Morphology of Polymer and Fullerene Blends in Organic Photovoltaics Through Sequential Processing and Self Assembly written by Jordan C. Aguirre and published by . This book was released on 2015 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Organic photovoltaics are a potential source for cheap renewable energy. However one of the main limitations to the field thus far has been scalability. Power conversion efficiencies of photovoltaic films made on the laboratory scale of a couple of mm2 can be as high as 10%. However when the device area is increased to even tens of mm2 power conversion efficiency plummets. This work presented in this dissertation focuses on understanding and circumventing the issues limiting the expansion of photovoltaic processing to larger device areas. One method of maintaining photovoltaic efficiency over a large range of device areas is to use self-assembling materials to control the active layer morphology. These materials should give the preferred morphology regardless of substrate size. I first study photovoltaic devices utilizing self-assembling fullerenes designed to form nanometerscale wires within the film active layer. I show that fullerene that are able to form these nano-wires give a higher device range electron mobility through measuring the space charge limited current through a photovoltaic device. However the photovoltaic efficiencies of devices using these fullerenes remains low. I use time resolved microwave conductivity to measure the local nm-scale mobility of these fullerenes to show that there exists two ranges of mobilities in organic photovoltaic films. The nm-scale moiibility, governed by electronic overlap of neighboring molecules, and the device range mobility, governed by film morphology. I show that device performance is maximized when both mobility scales are taken into account. Self-assembly is not the only method to achieve scalable organic photovoltaic devices. Next, I show that the fabrication method of sequential processing can give identical device performance between films fabricated on 7.2 mm2 and 34 mm2 substrates. This is because films produced by sequential processing allows the polymer layer to form prior to fullerene deposition, giving higher film quality. I show this scalability is not seen in films that are fabricated through blendcasting, where the donor and acceptor materials are blending together in solution and deposited together onto the substrate. Sequential processing proves to be a powerful fabrication technique in making scalable organic photovoltaic films. Therefore I develop a method of selecting fullerene deposition solvents that are compatible with any donor polymer. I show that polymer swelling is a key step in sequential processing film formation. I provide a procedure on tuning the c interaction parameter between the fullerene deposition solvent and the polymer layer. This is done by mixing a good polymer solvent with a poor polymer solvent.This ensures the fullerene deposition solvent swells, but does not dissolve the polymer film. By selecting the correct polymer solvent/non-solvent pair and ratio films fabricated by sequential processing can reach device performances matching those fabricated by traditional blendcasting.

Book Organic Photovoltaics

Download or read book Organic Photovoltaics written by Sam-Shajing Sun and published by CRC Press. This book was released on 2017-12-19 with total page 916 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently developed organic photovoltaics (OPVs) show distinct advantages over their inorganic counterparts due to their lighter weight, flexible shape, versatile materials synthesis and device fabrication schemes, and low cost in large-scale industrial production. Although many books currently exist on general concepts of PV and inorganic PV materials and devices, few are available that offer a comprehensive overview of recently fast developing organic and polymeric PV materials and devices. Organic Photovoltaics: Mechanisms, Materials, and Devices fills this gap. The book provides an international perspective on the latest research in this rapidly expanding field with contributions from top experts around the world. It presents a unified approach comprising three sections: General Overviews; Mechanisms and Modeling; and Materials and Devices. Discussions include sunlight capture, exciton diffusion and dissociation, interface properties, charge recombination and migration, and a variety of currently developing OPV materials/devices. The book also includes two forewords: one by Nobel Laureate Dr. Alan J. Heeger, and the other by Drs. Aloysius Hepp and Sheila Bailey of NASA Glenn Research Center. Organic Photovoltaics equips students, researchers, and engineers with knowledge of the mechanisms, materials, devices, and applications of OPVs necessary to develop cheaper, lighter, and cleaner renewable energy throughout the coming decades.