Download or read book Thermal Behavior of Photovoltaic Devices written by Olivier Dupré and published by Springer. This book was released on 2016-12-02 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the thermal issues in photovoltaics. It also offers an extensive overview of the physics involved and insights into possible thermal optimizations of the different photovoltaic device technologies.In general, temperature negatively affects the efficiency of photovoltaic devices. The first chapter describes the temperature-induced losses in photovoltaic devices and reviews the strategies to overcome them. The second chapter introduces the concept of temperature coefficient, the underlying physics and some guidelines for reducing their negative impacts. Subsequent chapters offer a comprehensive and general thermal model of photovoltaic devices, and review how current and emerging technologies, mainly solar cells but also thermophotovoltaic devices, can benefit from thermal optimizations.Throughout the book, the authors argue that the energy yield of photovoltaic devices can be optimized by taking their thermal behavior and operating conditions into consideration in their design.
Download or read book Practical Handbook of Photovoltaics written by Augustin McEvoy and published by Academic Press. This book was released on 2012 with total page 1269 pages. Available in PDF, EPUB and Kindle. Book excerpt: This handbook opens with an overview of solar radiation and how its energy can be tapped using photovoltaic cells. Other chapters cover the technology, manufacture and application of PV cells in real situations. The book ends by exploring the economic and business aspects of PV systems.
Download or read book Solar Photovoltaic Cells written by Alexander P. Kirk and published by Academic Press. This book was released on 2014-11-06 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar Photovoltaic Cells: Photons to Electricity outlines our need for photovoltaics - a field which is exploding in popularity and importance. This concise book provides a thorough understanding of solar photovoltaic cells including how these devices work, what can be done to optimize the technology, and future trends in the marketplace. This book contains a detailed and logical step-by-step explanation of thermodynamically-consistent solar cell operating physics, a comparison of advanced multi-junction CPV power plants versus combined-cycle thermal power plants in the framework of energy cascading, and a discussion of solar cell semiconductor resource limitations and the scalability of solar electricity as we move forward. Quantitative examples allow the reader to understand the scope of solar PV and the challenges and opportunities of producing clean electricity. - Provides a compact and focused discussion of solar photovoltaics and solar electricity generation. - Helps you understand the limits of solar PV and be able to predict future trends. - Quantitative examples help you grasp the scope of solar PV and the challenges and opportunities of producing electricity from a renewable resource.
Download or read book McEvoy s Handbook of Photovoltaics written by Soteris Kalogirou and published by Academic Press. This book was released on 2017-08-24 with total page 1341 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Handbook of Photovoltaics, Third Edition, is a 'benchmark' publication for those involved in the design, manufacture and use of these devices. This fully revised handbook includes brand new sections on smart grids, net metering and the modeling of photovoltaic systems, as well as fully revised content on developments in photovoltaic applications, the economics of PV manufacturing and updated chapters on solar cell function, raw materials, photovoltaic standards, calibration and testing, all with new examples and case studies. The editor has assembled internationally-respected contributors from industry and academia around the world to make this a truly global reference. It is essential reading for electrical engineers, designers of systems, installers, architects, policymakers and physicists working with photovoltaics. - Presents a cast of international experts from industry and academia to ensure the highest quality information from multiple stakeholder perspectives - Covers all things photovoltaics, from the principles of solar cell function and their raw materials, to the installation and design of full photovoltaic systems - Includes case studies, practical examples, and reports on the latest advances and worldwide applications
Download or read book Semiconductor Materials for Solar Photovoltaic Cells written by M. Parans Paranthaman and published by Springer. This book was released on 2015-09-16 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing. Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost. Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce costs, with particular focus on how to reduce the gap between laboratory scale efficiency and commercial module efficiency. This book will aid materials scientists and engineers in identifying research priorities to fulfill energy needs, and will also enable researchers to understand novel semiconductor materials that are emerging in the solar market. This integrated approach also gives science and engineering students a sense of the excitement and relevance of materials science in the development of novel semiconductor materials. · Provides a comprehensive introduction to solar PV cell materials · Reviews current and future status of solar cells with respect to cost and efficiency · Covers the full range of solar cell materials, from silicon and thin films to dye sensitized and organic solar cells · Offers an in-depth account of the semiconductor material strategies and directions for further research · Features detailed tables on the world leaders in efficiency demonstrations · Edited by scientists with experience in both research and industry
Download or read book Solar Cell Device Physics written by Stephen J. Fonash and published by Elsevier. This book was released on 2012-12-02 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solar Cell Device Physics offers a balanced, in-depth qualitative and quantitative treatment of the physical principles and operating characteristics of solar cell devices. Topics covered include photovoltaic energy conversion and solar cell materials and structures, along with homojunction solar cells. Semiconductor-semiconductor heterojunction cells and surface-barrier solar cells are also discussed. This book consists of six chapters and begins by introducing the reader to the basic physical principles and materials properties that are the foundations of photovoltaic energy conversion, with emphasis on various photovoltaic devices capable of efficiently converting solar energy into usable electrical energy. The electronic and optical properties of crystalline, polycrystalline, and amorphous materials with both organic and inorganic materials are considered, together with the manner in which these properties change from one material class to another and the implications of such changes for photovoltaics. Generation, recombination, and bulk transport are also discussed. The two mechanisms of photocarrier collection in solar cells, drift and diffusion, are then compared. The remaining chapters focus on specific solar cell device classes defined in terms of the interface structure employed: homojunctions, semiconductor-semiconductor heterojunctions, and surface-barrier devices. This monograph is appropriate for use as a textbook for graduate students in engineering and the sciences and for seniors in electrical engineering and applied physics, as well as a reference book for those actively involved in solar cell research and development.
Download or read book High Efficiency Solar Cells written by Xiaodong Wang and published by Springer Science & Business Media. This book was released on 2013-11-01 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the effort to increase the contribution of solar cells (photovoltaics) to our energy mix, this book addresses three main areas: making existing technology cheaper, promoting advanced technologies based on new architectural designs, and developing new materials to serve as light absorbers. Leading scientists throughout the world create a fundamental platform for knowledge sharing that combines the physics, materials, and device architectures of high-efficiency solar cells. While providing a comprehensive introduction to the field, the book highlights directions for further research, and is intended to stimulate readers’ interest in the development of novel materials and technologies for solar energy applications.
Download or read book Organic Photovoltaics written by Sam-Shajing Sun and published by CRC Press. This book was released on 2017-12-19 with total page 916 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently developed organic photovoltaics (OPVs) show distinct advantages over their inorganic counterparts due to their lighter weight, flexible shape, versatile materials synthesis and device fabrication schemes, and low cost in large-scale industrial production. Although many books currently exist on general concepts of PV and inorganic PV materials and devices, few are available that offer a comprehensive overview of recently fast developing organic and polymeric PV materials and devices. Organic Photovoltaics: Mechanisms, Materials, and Devices fills this gap. The book provides an international perspective on the latest research in this rapidly expanding field with contributions from top experts around the world. It presents a unified approach comprising three sections: General Overviews; Mechanisms and Modeling; and Materials and Devices. Discussions include sunlight capture, exciton diffusion and dissociation, interface properties, charge recombination and migration, and a variety of currently developing OPV materials/devices. The book also includes two forewords: one by Nobel Laureate Dr. Alan J. Heeger, and the other by Drs. Aloysius Hepp and Sheila Bailey of NASA Glenn Research Center. Organic Photovoltaics equips students, researchers, and engineers with knowledge of the mechanisms, materials, devices, and applications of OPVs necessary to develop cheaper, lighter, and cleaner renewable energy throughout the coming decades.
Download or read book The Physics of Solar Cells written by Juan Bisquert and published by CRC Press. This book was released on 2017-11-15 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides an explanation of the operation of photovoltaic devices from a broad perspective that embraces a variety of materials concepts, from nanostructured and highly disordered organic materials, to highly efficient devices such as the lead halide perovskite solar cells. The book establishes from the beginning a simple but very rich model of a solar cell, in order to develop and understand step by step the photovoltaic operation according to fundamental physical properties and constraints. It emphasizes the aspects pertaining to the functioning of a solar cell and the determination of limiting efficiencies of energy conversion. The final chapters of the book establish a more refined and realistic treatment of the many factors that determine the actual performance of experimental devices: transport gradients, interfacial recombination, optical losses and so forth. The book finishes with a short review of additional important aspects of solar energy conversion, such as the photonic aspects of spectral modification, and the direct conversion of solar photons to chemical fuel via electrochemical reactions.
Download or read book The Physics Of Solar Cells written by Jenny A Nelson and published by World Scientific Publishing Company. This book was released on 2003-05-09 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included.
Download or read book Perovskite Photovoltaics written by Aparna Thankappan and published by Academic Press. This book was released on 2018-06-29 with total page 521 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perovskite Photovoltaics: Basic to Advanced Concepts and Implementation examines the emergence of perovskite photovoltaics, associated challenges and opportunities, and how to achieve broader development. Consolidating developments in perovskite photovoltaics, including recent progress solar cells, this text also highlights advances and the research necessary for sustaining energy. Addressing different photovoltaics fields with tailored content for what makes perovskite solar cells suitable, and including commercialization examples of large-scale perovskite solar technology. The book also contains a detailed analysis of the implementation and economic viability of perovskite solar cells, highlighting what photovoltaic devices need to be generated by low cost, non-toxic, earth abundant materials using environmentally scalable processes. This book is a valuable resource engineers, scientists and researchers, and all those who wish to broaden their knowledge on flexible perovskite solar cells. - Includes contributions by leading solar cell academics, industrialists, researchers and institutions across the globe - Addresses different photovoltaics fields with tailored content for what makes perovskite solar cells different - Provides commercialization examples of large-scale perovskite solar technology, giving users detailed analysis on the implementation, technical challenges and economic viability of perovskite solar cells
Download or read book Thin Film Solar Cells written by Yoshihiro Hamakawa and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive book on thin-film solar cells, potentially a key technology for solving the energy production problem in the 21st century in an environmentally friendly way. It covers a wide range of scientific and technological aspects of thin film semiconductors - deposition technologies, growth mechanisms and the basic properties of amorphous and nano-crystalline silicon - as well as the optimum design theory and device physics of high-efficiency solar cells, especially of single-junction and multi-junction solar cells. The development of large-area solar cell modules using single and multi-junction solar cells is also considered. Examples of recent photovoltaic systems are presented and analysed.
Download or read book Solar Cells and Modules written by Arvind Shah and published by Springer Nature. This book was released on 2020-07-16 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive introduction to the field of photovoltaic (PV) solar cells and modules. In thirteen chapters, it addresses a wide range of topics including the spectrum of light received by PV devices, the basic functioning of a solar cell, and the physical factors limiting the efficiency of solar cells. It places particular emphasis on crystalline silicon solar cells and modules, which constitute today more than 90 % of all modules sold worldwide. Describing in great detail both the manufacturing process and resulting module performance, the book also touches on the newest developments in this sector, such as Tunnel Oxide Passivated Contact (TOPCON) and heterojunction modules, while dedicating a major chapter to general questions of module design and fabrication. Overall, it presents the essential theoretical and practical concepts of PV solar cells and modules in an easy-to-understand manner and discusses current challenges facing the global research and development community.
Download or read book Handbook of Photovoltaic Science and Engineering written by Antonio Luque and published by John Wiley & Sons. This book was released on 2011-01-31 with total page 1172 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most comprehensive, authoritative and widely cited reference on photovoltaic solar energy Fully revised and updated, the Handbook of Photovoltaic Science and Engineering, Second Edition incorporates the substantial technological advances and research developments in photovoltaics since its previous release. All topics relating to the photovoltaic (PV) industry are discussed with contributions by distinguished international experts in the field. Significant new coverage includes: three completely new chapters and six chapters with new authors device structures, processing, and manufacturing options for the three major thin film PV technologies high performance approaches for multijunction, concentrator, and space applications new types of organic polymer and dye-sensitized solar cells economic analysis of various policy options to stimulate PV growth including effect of public and private investment Detailed treatment covers: scientific basis of the photovoltaic effect and solar cell operation the production of solar silicon and of silicon-based solar cells and modules how choice of semiconductor materials and their production influence costs and performance making measurements on solar cells and modules and how to relate results under standardised test conditions to real outdoor performance photovoltaic system installation and operation of components such as inverters and batteries. architectural applications of building-integrated PV Each chapter is structured to be partially accessible to beginners while providing detailed information of the physics and technology for experts. Encompassing a review of past work and the fundamentals in solar electric science, this is a leading reference and invaluable resource for all practitioners, consultants, researchers and students in the PV industry.
Download or read book Photovoltaic Science and Technology written by J. N. Roy and published by Cambridge University Press. This book was released on 2018-03-09 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Discusses the principles of operation of photovoltaic devices, their limitations, choice of materials and maximum efficiencies"--
Download or read book Applied Photovoltaics written by Stuart R. Wenham and published by Routledge. This book was released on 2013-01-11 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition of this thoroughly considered textbook provides a reliable, accessible and comprehensive guide for students of photovoltaic applications and renewable energy engineering. Written by a group of award-winning authors it is brimming with information and is carefully designed to meet the needs of its readers. Along with exercises and references at the end of each chapter, it features a set of detailed technical appendices that provide essential equations, data sources and standards. The new edition has been fully updated with the latest information on photovoltaic cells, modules, applications and policy. Starting from basics with 'The Characteristics of Sunlight' the reader is guided step-by-step through semiconductors and p-n junctions; the behaviour of solar cells; cell properties and design; and PV cell interconnection and module fabrication. The book covers stand-alone photovoltaic systems; specific purpose photovoltaic systems; remote area power supply systems; grid-connected photovoltaic systems and water pumping. Applied Photovoltaics is highly illustrated and very accessible, providing the reader with all the information needed to start working with photovoltaics.
Download or read book Electrical and Electronic Devices Circuits and Materials written by Suman Lata Tripathi and published by John Wiley & Sons. This book was released on 2021-03-24 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing demand for electronic devices for private and industrial purposes lead designers and researchers to explore new electronic devices and circuits that can perform several tasks efficiently with low IC area and low power consumption. In addition, the increasing demand for portable devices intensifies the call from industry to design sensor elements, an efficient storage cell, and large capacity memory elements. Several industry-related issues have also forced a redesign of basic electronic components for certain specific applications. The researchers, designers, and students working in the area of electronic devices, circuits, and materials sometimesneed standard examples with certain specifications. This breakthrough work presents this knowledge of standard electronic device and circuit design analysis, including advanced technologies and materials. This outstanding new volume presents the basic concepts and fundamentals behind devices, circuits, and systems. It is a valuable reference for the veteran engineer and a learning tool for the student, the practicing engineer, or an engineer from another field crossing over into electrical engineering. It is a must-have for any library.