EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Photoelectrochemical Kinetics of Visible light Driven Water Splitting at Rh   SrTiO3 Based Electrodes

Download or read book Photoelectrochemical Kinetics of Visible light Driven Water Splitting at Rh SrTiO3 Based Electrodes written by Manuel Antuch Cubillas and published by . This book was released on 2018 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The kinetics of water photo-dissociation assisted by visible light was the main topic of this work. The Rh doped SrTiO3 semiconductor was employed as photo-excitable material. It can absorb visible light and therefore transform solar energy into useful chemical fuels. In this manuscript, a wide bibliographic overview is provided in the 1st Chapter, covering a description of the characterization methods and current models for photoelectrochemical kinetics. The 2nd Chapter is devoted to the description of the materials and methods. The 3rd Chapter deals with the full photoelectrochemical kinetic characterization of water splitting with Rh:SrTiO3 photoelectrodes, surface-modified by addition of a model clathrochelate or with metallic Cu or Pt. In the 4th Chapter, a theoretical study of the mechanism of hydrogen evolution catalyzed by a model clathrochelate is provided. During the discussion, the EXAFS spectrum of the organometallic complex was thoroughly analyzed and modelled, and the relevant protonated intermediates involved in the mechanism were identified. The 5th Chapter deals with the photoelectrochemical dynamics of illuminated Rh:SrTiO3 -based photo-electrodes, characterized by the light-modulated photovoltage technique. Unusual results were obtained and are reported in this thesis for the first time. This unexpected dynamic behavior has been modelled by a set of classical differential equations usually used to describe such photo-processes.

Book Fabrication and Characterization of Semiconductor Based Photo catalysis for Light Driven Water Splitting

Download or read book Fabrication and Characterization of Semiconductor Based Photo catalysis for Light Driven Water Splitting written by Shady Abd El-Nasser and published by . This book was released on 2017 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: he straightforward, low-priced and hence extensive conversion of sun light utilizing photocatalysis in a water splitting process is the main source to provide a clean and renwable hydrogen supply. Principally, photocatalysts are semiconductor materials with a suitable band gap that can absorb incident photons to produce photogeneated charges which consequently initiate the water splitting reaction to generate oxygen and hydrogen. The process itself is typically influenced by the material properties of the semiconductor (band gap, redox potentials and crystallinity) thus, altering the band structure of the semiconductor would help build up a photocatalyst that is appropriate for susbtaintial hydrogen generation. This thesis exemplifies a detailed study of high performance yet affordable photo-electrodes for solar-driven hydrogen production using Titanium (II) oxide (TiO2). Tio2 is considered to be a favorable photocatalyst that can be used as a photoanode in the photoelectrochemical cell due to its unique properties. In particular it's high physical and chemical stability, high oxidizing power of the photogenerated holes, low-cost and non-toxicity. However, TiO2 is ideal for water splitting only under ultraviolet (UV) light due to its band gap that reaches 3.2 eV which makes its photocatalytic activity only restricted to the UV range that comprises only about 3% of the whole solar spectrum. In this study, two titania based photoanode systems were investigated in an effort to optimize the trade-off between the low external bias needed (electrical energy input) and the high photocurrent spectral response (H2 output). In the first part, Na-modified TiO2 nanostructured electrodes were studied. Varying the Na content showed a noticeable impact on the optical as well as the photoelectrochemical characteristics. The morphological characterization affirmed the presence of a discontinuous layer adsorbed over the surface of the TiO2 nanotubes where the tublar structure is kept preserved after treatment. Chemical analysis revealed no significant change in the structural properties of TiO2 upon modification which proves that the alkali ions were just dispersed within the TiO2 network. Optical properties illustrate the inclusion of conduction band tail states attributed to the disordered structure where the absorption edge is slightly shifted towards higher wavelength regions. The modified electrodes maintained nearly 81 % enhancement in the photoconductivity (0.9928 mA cm-2) in comparison with that of bare TiO2 (0.1821 mA cm-2) under AM 1.5G illumination (100 mW cm-2, 0.05 M Ba (OH) 2). Also, improved carriers' separation and mobility has been accomplished which was asserted by the electrochemical impedance spectroscopy that revealed less charge transfer resistance as well as space charge capacitance for the surface modified electrodes. Further, the Mott-Schottky analysis affirmed the observed Voc enhancement by demonstrating a negative shift in the flat band potential for all the Na+-modified electrodes with respect to that of the pristine TiO2 implying less band bending requirements. Finally, DFT calculations were implemented to add further details on the electronic structure of the disordered titania confirming the empirical findings obtained upon surface modification. In the second part of this work, hybrid PEDOT/TiO2 photoelectrodes were analyzed. The development of such nanocomposites was accomplished by controlled electrochemical anodization of Ti foil, followed by a simple and fast spin coating of PEDOT. The heterojunctions maintained superior optical sensitivity where the absorption band edge reaches nearly l@ 694 nm with respect to that of the unsensitized (TiO2 l@ 382 nm). This clearly indicates the ability to promote water splitting under visible irradiation. Likewise, superior photoelectrochemical performance concerning the photoconductivity, and the charge transfer kinetics were recognized mainly due to the fact that the highest occupied molecular orbit (HOMO) and lowest unoccupied molecular orbit (LUMO) of PEDOT are more negative than the conduction band (CB) and the valence band (VB) of TiO2. This in return, not only narrows down the band gap but also facilitates the separation of photo-induced charges and accordingly improves the photocatalytic activity.

Book Advances in Photoelectrochemical Water Splitting

Download or read book Advances in Photoelectrochemical Water Splitting written by S. David Tilley and published by Royal Society of Chemistry. This book was released on 2018 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tremendous research is taking place to make photoelectrochemical (PEC) water splitting technology a reality. Development of high performance PEC systems requires an understanding of the theory to design novel materials with attractive band gaps and stability. Focusing on theory and systems analysis, Advances in Photoelectrochemical Water Splitting provides an up-to-date review of this exciting research landscape. The book starts by addressing the challenges of water splitting followed by chapters on the theoretical design of PEC materials and their computational screening. The book then explores advances in identifying reaction intermediates in PEC materials as well as developments in solution processed photoelectrodes, photocatalyst sheets, and bipolar membranes. The final part of the book focuses on systems analysis, which lays out a roadmap of where researchers hope the fundamental research will lead us. Edited by world experts in the field of solar fuels, the book provides a comprehensive overview of photoelectrochemical water splitting, from theoretical aspects to systems analysis, for the energy research community.

Book Photoelectrochemical Water Splitting

Download or read book Photoelectrochemical Water Splitting written by Inamuddin and published by Materials Research Forum LLC. This book was released on 2020-04-05 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photoelectrochemical (PEC) water splitting is a highly promising process for converting solar energy into hydrogen energy. The book presents new cutting-edge research findings in this field. Subjects covered include fabrication and characteristics of various electrode materials, cell design and strategies for enhancing the properties of PEC electrode materials. Keywords: Renewable Energy Sources, Solar Energy Conversion, Hydrogen Production, Photoelectrochemical Water Splitting, Electrode Materials for Water Splitting, Transition Metal Chalcogenide Electrodes, Narrow Bandgap Semiconductor Electrodes, Ti-based Electrode Materials, BiVO4 Photoanodes, Noble Electrode Materials, Cell Design for Water Splitting.

Book Photoelectrochemical Water Splitting

Download or read book Photoelectrochemical Water Splitting written by Inamuddin and published by Materials Research Forum LLC. This book was released on 2020-04-05 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Photoelectrochemical (PEC) water splitting is a highly promising process for converting solar energy into hydrogen energy. The book presents new cutting-edge research findings in this field. Subjects covered include fabrication and characteristics of various electrode materials, cell design and strategies for enhancing the properties of PEC electrode materials. Keywords: Renewable Energy Sources, Solar Energy Conversion, Hydrogen Production, Photoelectrochemical Water Splitting, Electrode Materials for Water Splitting, Transition Metal Chalcogenide Electrodes, Narrow Bandgap Semiconductor Electrodes, Ti-based Electrode Materials, BiVO4 Photoanodes, Noble Electrode Materials, Cell Design for Water Splitting.

Book Photoelectrochemical Water Splitting

Download or read book Photoelectrochemical Water Splitting written by H.- J. Lewerenz and published by Royal Society of Chemistry. This book was released on 2013 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been a resurgence of interest in light-induced water splitting as the search for storable carbon neutral energy becomes more urgent. Although the history of the basic idea dates back more than four decades, efficient, economical and stable integrated devices have yet to be realized. In the continuing quest for such devices, the field of photoelectrochemistry is entering a new phase where the extraordinary interdisciplinary of the research and development efforts are opening new avenues. This aspect of current research effort is reflected in the chapters of this book, which encompass present thinking in the various disciplines such as materials science, photo-electrochemistry and interfaces that can contribute to realization of viable solar fuel generators. This book presents a blend of the background science and recent advances in the field of photoelectrochemical water splitting, and includes aspects that point towards medium to long term future realization. The content of the book goes beyond the more traditional approaches to the subject by including topics such as novel excitation energy processes that have only been realized so far in advanced photonics. The comprehensive overview of current activities and development horizons provided by the impressive collection of internationally renowned authors therefore represents a unique reflection of current thinking regarding water splitting by light.

Book Photochemical Water Splitting

Download or read book Photochemical Water Splitting written by Neelu Chouhan and published by CRC Press. This book was released on 2017-01-27 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cleavage of water to its constituents (i.e., hydrogen and oxygen) for production of hydrogen energy at an industrial scale is one of the "holy grails" of materials science. That can be done by utilizing the renewable energy resource i.e. sunlight and photocatalytic material. The sunlight and water are abundant and free of cost available at this planet. But the development of a stable, efficient and cost-effective photocatalytic material to split water is still a great challenge. To develop the effective materials for photocatalytic water splitting, various type of materials with different sizes and structures from nano to giant have been explored that includes metal oxides, metal chalcogenides, carbides, nitrides, phosphides, and so on. Fundamental concepts and state of art materials for the water splitting are also discussed to understand the phenomenon/mechanism behind the photoelectrochemical water splitting. This book gives a comprehensive overview and description of the manufacturing of photocatalytic materials and devices for water splitting by controlling the chemical composition, particle size, morphology, orientation and aspect ratios of the materials. The real technological breakthroughs in the development of the photoactive materials with considerable efficiency, are well conversed to bring out the practical aspects of the technique and its commercialization.

Book Water Photo  and Electro Catalysis

Download or read book Water Photo and Electro Catalysis written by Shaohua Shen and published by John Wiley & Sons. This book was released on 2024-02-21 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Water Photo- and Electro-Catalysis Introduce yourself to the cutting-edge processes of water photo- and electro-catalysis with this important guide Photocatalysis and electrocatalysis reactions involving water are becoming an increasingly important component of energy and sustainability research. Water electrocatalysis and photo-electrocatalysis promise to have a significant impact on human energy production and its by-products, and to play a substantial role in solutions to global energy and environmental crises. Familiarity with these processes will be critical for sustainable energy production in the coming years. Water Photo- and Electro-Catalysis provides a detailed and readable introduction to these processes and their attendant technologies. It covers mechanisms, materials, and devices that catalyze water-based energy conversion, as well as introducing the theoretical principles that are driving the development of new technologies in this area. The result is an essential book for researchers and materials scientists in a range of fields. Water Photo- and Electro-Catalysis readers will also find: An editorial team with decades of combined experience in energy and materials science research Detailed treatment of electrocatalysis processes for hydrogen evolution (HER), oxygen/hydrogen peroxide evolution (OER/HPER), and more Analysis of mechanisms including heterogenous vs. homogenous photocatalysis, electrodes-based photo-electrocatalysis, and photovoltaic-electrocatalysis Water Photo- and Electro-Catalysis is a valuable reference for catalytic chemists, materials scientists, energy chemists, and all research and industry professionals in photo(electro)catalysis and sustainable energy fields.

Book Exploring Visible light responsive Photocatalysts for Water Splitting Based on Novel Band gap Engineering Strategies

Download or read book Exploring Visible light responsive Photocatalysts for Water Splitting Based on Novel Band gap Engineering Strategies written by Jikai Liu and published by . This book was released on 2013 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing demand for renewable energy is driving innovations in both science and technology. Hydrogen has been broadly identified as a potential clean energy carrier due to its high energy capacity (enthalpy of combustion is as high as 286 kJ/mol) and environmental friendliness (the only product after burning is water). Meanwhile, solar energy is renewable, abundant and easily available. Solar-driven H2 production from water has therefore attracted global attention in the past decades since the first report of photoelectrochemical (PEC) water splitting based on an n-type TiO2 photoanode. Many semiconductor-based materials have been synthesized and studied for their photocatalytic or PEC performance. Among them, visible-light-active photocatalytsts are more promising since the energy of the visible-light region takes up a large proportion of the whole solar spectrum. Herein, we found two novel groups of compounds, e.g. copper borates and boron carbides. We investigated the origins and performances of their photocatalytic water splitting under visible light irradiation. It is found that the visible light activities of the two groups are resulted from different band-gap engineering mechanisms. For the two copper borates compounds, e.g. CuB2O4 and Cu3B2O6, we found that the visible light activity is from the intrinsic midgap states in the two compounds. Both midgap states serve as an electron acceptor level, but they function very differently in the two copper borates. For CuB2O4, the midgap states facilitate the visible light absorption for photocatalytic water splitting, while for Cu3B2O6, the midgap states trap electrons and reduce the photocatalytic activity. For the two boron carbides, e.g. B4.3C and B13C2, they exhibit efficient photocatalytic H2 evolution and PEC H2 evolution as a stable photocathode under visible light irradiation. Interestingly, it is found that the inherent defects and structural distortions in B4.3C cause a continuum downshift of its conduction band (CB) edge that facilitates visible-light absorption and water splitting based on density functional theory (DFT) calculations. In B13C2, however, the more complicated structural defects and distortions result in a large number of midgap states between the CB and the valence band (VB), which reduce its overall photocatalytic and PEC water splitting efficiency by promoting charge recombination.

Book Investigation Into Covalent Triazine Frameworks for High Efficiency Visible light Driven Water Splitting

Download or read book Investigation Into Covalent Triazine Frameworks for High Efficiency Visible light Driven Water Splitting written by Dan Kong and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Efficient utilisation of solar energy could alleviate major energy and the related environmental issues. The conversion of solar energy into chemical fuels by artificial photosynthesis has thus received much attention, e.g. production of renewable hydrogen from water. Since the first photoelectrode titanium dioxide was found for photoelectrochemical water splitting in 1972, substantial progress on semiconducting materials for photocatalytic water splitting has been made. Specifically, to utilise sunlight efficiently, developing visible-light-responsive photocatalysts is indispensable to realise the application of solar-to-chemical energy conversion in practice. Considering few overall water splitting systems reported, investigation on the oxidative and the reductive half reactions separately is significant for fundamental understanding, optimisations and finally complete water-splitting cycles. Among these photocatalysts, inorganic photocatalysts have been widely explored for the hydrogen evolution reaction. However, most of them are either only active under UV light irradiation or their efficiency is moderate, due to either large band gap energy or fast charge recombination. In the past few years, the increasing interest in a class of metal-free organic photocatalysts for water splitting has been raised, as these organic polymers feature twodimensional (2D) conjugated structures, high chemical stability, ease of modification to achieve suitable thermodynamical potentials to overall water splitting. The most common metal-free organic photocatalyst is melon-based graphitic carbon nitride (for simplicity, usually denoted gC3N4). Moreover, a series of covalent triazine frameworks (CTFs) were synthesised recently. These materials were formed by the ionothermal trimerization of aromatic nitriles in molten ZnCl2 and built up by alternating triazine and phenyl building blocks. Because of the covalent triazine-based structure, CTFs possess excellent thermal and chemical stability, beneficial as new catalysts in liquid phase reactions. CTFs with the Ï€-stacked aromatic units would also be expected to promote exciton separation and charge transportation, promising for photocatalytic lightdriven water splitting. As such, the research project targets on visible light-driven CTF photocatalysts for pure water splitting. Firstly, the photooxidation of water using oxygen doped CTF-1(OCT) was investigated. The OCT was created by a simple dynamic trimerization reaction of the precursor 1,4-dicyanobenzene in ionothermal conditions, that is, in molten zinc chloride at high temperature. It was found that due to the oxygen-containing reaction atmosphere, some oxygen was doped in the crystals to modify the structure, optical, and electrical properties of the materials, resulting in the much better operation window (from UV to NIR) than the benchmark photooxidation catalyst BiVO4 (only active from UV to 500 nm). The external quantum efficiency of OCT was determined to be 2.6% at the wavelength of 400 nm, 1.5% at 500 nm, even ~0.2% at wavelength as long as 800 nm. Structure optimization, thermodynamic calculation and electronic structure analysis of OCT calculated by density functional theory (DFT) were carried out to illustrate the mechanism of the increasing photooxidation yield successfully, which could be applied to improve other semiconductors. Furthermore, hydrogen and oxygen evolutions from water were carried out by another polymer photocatalyst CTF-0, which is one member of the CTFs group and based on 1,3,5-tricyanobenzene as monomer under ionothermal conditions. Compared with OCT, CTF-0 crystals have higher nitrogen ratio and smaller pore size. Herein, two different synthesis ways of a novel photocatalyst covalent triazine framework CTF-0 were utilised and tested for photocatalytic H2 and O2 evolution under visible light irradiation. The CTF-0-M2 produced by a microwave method shows an almost 7 times higher photocatalytic activity of hydrogen evolution (up to 701 AÌ‚Î1⁄4mol/h) than the CTF-0-I produced by an ionothermal trimerization method under similar photocatalytic conditions, which leads to an extremely high turnover number (TON) of 726 over a platinum cocatalyst after seven circles. This can be attributed to the narrow band gap and the rapid photogenerated charge separation and transportation. Whereas, CTF-0-I has produced rough 6 times higher oxygen of 22.6 AÌ‚Î1⁄4mol in the first hour than CTF-0-M2 under the same experimental condition. A high apparent quantum efficiency (AQY) of 7.2% at 420 nm for oxygen production was obtained from aqueous AgNO3 solution without any cocatalysts, exceeding most of the reported CTFs, due to the large driving force of water oxidation and the large number of active sites. Finally, considering that the CTF-0 has a wide bandgap, which could produce both hydrogen and oxygen theoretically, decorating the different co-catalysts on the CTF-0 was explored for the entire water splitting to produce hydrogen and oxygen. The presence of the cocatalyst Pt and Co3O4 promotes the H2 and O2 evolution on the surface of the photocatalysts simultaneously, due to enhanced separation of photogenerated charge carriers, more active sites for catalytic H2 and O2 evolution and the improved stability by suppressing photo-corrosion. Loading different ratio of cobalt cocatalysts on CTF-0 has been explored for overall water splitting. And it is found that water splitting rates are influenced by the concentration of the cocatalyst. 6 wt% Co3O4 and 3wt% Pt-deposited CTF-0 shows the best photocatalytic performances of 0.82 IÌ‚1â „4mol/h H2 and 0.42 IÌ‚1â „4mol/h O2, nearly close to the stoichiometric H2/O2 ratio of 2:1. Whereas, the system didn"t work under the visible light but UV light irradiation, which might be because of the limitation of light absorption range and the efficiency of the charged carriers. Further work is required to confirm the factors and mechanism of the pure water splitting of CTF-0s.

Book Photocatalytic Hydrogen Evolution

Download or read book Photocatalytic Hydrogen Evolution written by Misook Kang and published by MDPI. This book was released on 2020-06-17 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy crises and global warming pose serious challenges to researchers in their attempt to develop a sustainable society for the future. Solar energy conversion is a remarkable, clean, and sustainable way to nullify the effects of fossil fuels. The findings of photocatalytic hydrogen production (PCHP) by Fujishima and Honda propose that “water will be the coal for the future”. Hydrogen is a carbon-free clean fuel with a high specific energy of combustion. Titanium oxide (TiO2), graphitic-carbon nitride (g-C3N4) and cadmium sulfide (CdS) are three pillars of water splitting photocatalysts owing to their superior electronic and optical properties. Tremendous research efforts have been made in recent years to fabricate visible or solar-light, active photocatalysts. The significant features of various oxide, sulfide, and carbon based photocatalysts for cost-effective hydrogen production are presented in this Special Issue. The insights of sacrificial agents on the hydrogen production efficiency of catalysts are also presented in this issue.

Book Visible light driven Photocatalytic Water Splitting Using CdS TiO2 Coupled Semiconductor Dispersed on Mesoporous SBA 15

Download or read book Visible light driven Photocatalytic Water Splitting Using CdS TiO2 Coupled Semiconductor Dispersed on Mesoporous SBA 15 written by Kulatheepan Thanabalasingam and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Ring disc Electrodes

    Book Details:
  • Author : Wyndham John Albery
  • Publisher : Oxford University Press, USA
  • Release : 1971
  • ISBN :
  • Pages : 208 pages

Download or read book Ring disc Electrodes written by Wyndham John Albery and published by Oxford University Press, USA. This book was released on 1971 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book TiO2 Nanoparticles

    Book Details:
  • Author : Aiguo Wu
  • Publisher : John Wiley & Sons
  • Release : 2020-06-02
  • ISBN : 3527347240
  • Pages : 252 pages

Download or read book TiO2 Nanoparticles written by Aiguo Wu and published by John Wiley & Sons. This book was released on 2020-06-02 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unique book that summarizes the properties, toxicology, and biomedical applications of TiO2-based nanoparticles Nanotechnology is becoming increasingly important for products used in our daily lives. Nanometer-sized titanium dioxide (TiO2) are widely used in industry for different purposes, such as painting, sunscreen, printing, cosmetics, biomedicine, and so on. This book summarizes the advances of TiO2 based nanobiotechnology and nanomedicine, covering materials properties, toxicological research, and biomedical application, such as antibacter, biosensing, and cancer theranostics. It uniquely integrates the TiO2 applications from physical properties, toxicology to various biomedical applications, and includes black TiO2 based cancer theranostics. Beginning with a comprehensive introduction to the properties and applications of nanoparticles, TiO2 Nanoparticles: Applications in Nanobiotechnology, Theranostics and Nanomedicine offers chapters on: Toxicity of TiO2 Nanoparticles; Antibacterial Applications of TiO2 Nanoparticles; Surface Enhanced Raman Spectrum of TiO2 Nanoparticle for Biosensing (TiO2 Nanoparticle Served as SERS Sensing Substrate); TiO2 as Inorganic Photosensitizer for Photodynamic Therapy; Cancer Theranostics of Black TiO2 Nanoparticles; and Neurodegenerative Disease Diagnostics and Therapy of TiO2-Based Nanoparticles. This title: -Blends the physical properties, toxicology of TiO2 nanoparticles to the many biomedical applications -Includes black TiO2 based cancer theranostics in its coverage -Appeals to a broad audience of researchers in academia and industry working on nanomaterials-based biosensing, drug delivery, nanomedicine TiO2 Nanoparticles: Applications in Nanobiotechnology, Theranostics and Nanomedicine is an ideal book for medicinal chemists, analytical chemists, biochemists, materials scientists, toxicologists, and those in the pharmaceutical industry.

Book Solar Light Harvesting with Nanocrystalline Semiconductors

Download or read book Solar Light Harvesting with Nanocrystalline Semiconductors written by Oleksandr Stroyuk and published by Springer. This book was released on 2017-11-07 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the use of nanocrystalline semiconductors in the harvesting of energy from solar light. It introduces promising methodology and technology which may help to increase the efficiency of light harvesting – one of the major challenges on the way toward sustainable energy generation.The book starts with a general introduction to the photochemistry of semiconductor nanocrystals. In the introductory chapter, the author also provides a frank and critical discussion on perspectives and limitations of the photocatalytic processes for solar light conversion including a historical account on semiconductor photocatalysis. He discusses that (and also why) it is a long way from laboratory prototypes to real sustainable technologies.The following chapters outline the conversion of solar light energy in semiconductor nanophotocatalysis on the one hand, and to (electric) energy in nanocrystalline semiconductor-based solar cells on the other hand. Topics addressed include nanophotocatalytic hydrogen production, artificial photosynthesis, quantum-dot sensitized liquid-junction and bulk heterojunction solar cells. Perspectives and opportunities, but also bottlenecks and limitations are discussed and the novel systems compared with established technology, such as classical silicon solar cells. While readers in this way learn to understand the basics and get introduced to the current research in the field, the final chapter provides them with the necessary knowledge about methodology, both in synthesis and characterization of semiconductor nanophotocatalysts and semiconductor nanomaterials, including examples for the practice of photocatalytic experiments and the studies of semiconductor-based solar cells.

Book Introduction to Photocatalysis

Download or read book Introduction to Photocatalysis written by Yoshio Nosaka and published by Royal Society of Chemistry. This book was released on 2019-03-07 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting the basic science of semiconductor photocatalysis together with the various practical applications, this textbook is ideal for graduate students. It covers fundamental principles and applicable techniques of light, solid state physics, electrochemistry, reaction kinetics, and materials processing. A solid understanding of semiconductor photoelectrochemistry is developed through discussing the basic properties of a representative photocatalytic material, TiO2; the basic science of the light absorption phenomenon and the application to the powder suspension useful for the photocatalytic research; and the electronic state of semiconductors. Following this, the textbook moves on to explore photoelectrochemistry; the mechanism and kinetic analysis of photocatalytic reactions; typical fabrication methods of common photocatalysts and the factors for improving photocatalytic activity; and evaluation methods of photocatalytic activity. The textbook concludes by looking at the future prospects of the applications of photocatalysis. This introductory textbook provides a foundation in photocatalysis to supplement graduate courses in catalysis, environmental science, materials science and chemical engineering.

Book Semiconductor Photocatalysis

Download or read book Semiconductor Photocatalysis written by Jiaguo Yu and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: