Download or read book Manipulating Quantum Systems written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2020-09-14 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.
Download or read book Quantum Many Body Physics in Open Systems Measurement and Strong Correlations written by Yuto Ashida and published by Springer Nature. This book was released on 2020-01-06 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the fundamental aspects of many-body physics in quantum systems open to an external world. Recent remarkable developments in the observation and manipulation of quantum matter at the single-quantum level point to a new research area of open many-body systems, where interactions with an external observer and the environment play a major role. The first part of the book elucidates the influence of measurement backaction from an external observer, revealing new types of quantum critical phenomena and out-of-equilibrium dynamics beyond the conventional paradigm of closed systems. In turn, the second part develops a powerful theoretical approach to study the in- and out-of-equilibrium physics of an open quantum system strongly correlated with an external environment, where the entanglement between the system and the environment plays an essential role. The results obtained here offer essential theoretical results for understanding the many-body physics of quantum systems open to an external world, and can be applied to experimental systems in atomic, molecular and optical physics, quantum information science and condensed matter physics.
Download or read book Quantum Scaling in Many Body Systems written by Mucio Continentino and published by Cambridge University Press. This book was released on 2017-04-17 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on experimental results, this updated edition approaches the problem of quantum phase transitions from a new and unifying perspective.
Download or read book Many Body Quantum Theory in Condensed Matter Physics written by Henrik Bruus and published by Oxford University Press. This book was released on 2004-09-02 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.
Download or read book Physics and Mathematics of Quantum Many Body Systems written by Hal Tasaki and published by Springer Nature. This book was released on 2020-05-07 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a self-contained advanced textbook on the mathematical-physical aspects of quantum many-body systems, which begins with a pedagogical presentation of the necessary background information before moving on to subjects of active research, including topological phases of matter. The book explores in detail selected topics in quantum spin systems and lattice electron systems, namely, long-range order and spontaneous symmetry breaking in the antiferromagnetic Heisenberg model in two or higher dimensions (Part I), Haldane phenomena in antiferromagnetic quantum spin chains and related topics in topological phases of quantum matter (Part II), and the origin of magnetism in various versions of the Hubbard model (Part III). Each of these topics represents certain nontrivial phenomena or features that are invariably encountered in a variety of quantum many-body systems, including quantum field theory, condensed matter systems, cold atoms, and artificial quantum systems designed for future quantum computers. The book’s main focus is on universal properties of quantum many-body systems. The book includes roughly 50 problems with detailed solutions. The reader only requires elementary linear algebra and calculus to comprehend the material and work through the problems. Given its scope and format, the book is suitable both for self-study and as a textbook for graduate or advanced undergraduate classes.
Download or read book Emergent Phenomena in Correlated Matter written by Eva Pavarini and published by Forschungszentrum Jülich. This book was released on 2013 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Strongly Interacting Quantum Systems out of Equilibrium written by Thierry Giamarchi and published by Oxford University Press. This book was released on 2016-07-07 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last decade new experimental tools and theoretical concepts are providing new insights into collective nonequilibrium behavior of quantum systems. The exquisite control provided by laser trapping and cooling techniques allows us to observe the behavior of condensed bose and degenerate Fermi gases under nonequilibrium drive or after `quenches' in which a Hamiltonian parameter is suddenly or slowly changed. On the solid state front, high intensity short-time pulses and fast (femtosecond) probes allow solids to be put into highly excited states and probed before relaxation and dissipation occur. Experimental developments are matched by progress in theoretical techniques ranging from exact solutions of strongly interacting nonequilibrium models to new approaches to nonequilibrium numerics. The summer school `Strongly interacting quantum systems out of equilibrium' held at the Les Houches School of Physics as its XCIX session was designed to summarize this progress, lay out the open questions and define directions for future work. This books collects the lecture notes of the main courses given in this summer school.
Download or read book Many body Theory Exposed Propagator Description Of Quantum Mechanics In Many body Systems 2nd Edition written by Willem Hendrik Dickhoff and published by World Scientific Publishing Company. This book was released on 2008-05-02 with total page 851 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive textbook on the quantum mechanics of identical particles includes a wealth of valuable experimental data, in particular recent results from direct knockout reactions directly related to the single-particle propagator in many-body theory. The comparison with data is incorporated from the start, making the abstract concept of propagators vivid and accessible. Results of numerical calculations using propagators or Green's functions are also presented. The material has been thoroughly tested in the classroom and the introductory chapters provide a seamless connection with a one-year graduate course in quantum mechanics. While the majority of books on many-body theory deal with the subject from the viewpoint of condensed matter physics, this book emphasizes finite systems as well and should be of considerable interest to researchers in nuclear, atomic, and molecular physics. A unified treatment of many different many-body systems is presented using the approach of self-consistent Green's functions. The second edition contains an extensive presentation of finite temperature propagators and covers the technique to extract the self-energy from experimental data as developed in the dispersive optical model.The coverage proceeds systematically from elementary concepts, such as second quantization and mean-field properties, to a more advanced but self-contained presentation of the physics of atoms, molecules, nuclei, nuclear and neutron matter, electron gas, quantum liquids, atomic Bose-Einstein and fermion condensates, and pairing correlations in finite and infinite systems, including finite temperature.
Download or read book Quantum Field Theory of Many Body Systems written by Xiao-Gang Wen and published by OUP Oxford. This book was released on 2004-06-04 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: For most of the last century, condensed matter physics has been dominated by band theory and Landau's symmetry breaking theory. In the last twenty years, however, there has been the emergence of a new paradigm associated with fractionalisation, topological order, emergent gauge bosons and fermions, and string condensation. These new physical concepts are so fundamental that they may even influence our understanding of the origin of light and fermions in the universe. This book is a pedagogical and systematic introduction to the new concepts and quantum field theoretical methods (which have fuelled the rapid developments) in condensed matter physics. It discusses many basic notions in theoretical physics which underlie physical phenomena in nature. Topics covered are dissipative quantum systems, boson condensation, symmetry breaking and gapless excitations, phase transitions, Fermi liquids, spin density wave states, Fermi and fractional statistics, quantum Hall effects, topological and quantum order, spin liquids, and string condensation. Methods covered are the path integral, Green's functions, mean-field theory, effective theory, renormalization group, bosonization in one- and higher dimensions, non-linear sigma-model, quantum gauge theory, dualities, slave-boson theory, and exactly soluble models beyond one-dimension. This book is aimed at teaching graduate students and bringing them to the frontiers of research in condensed matter physics.
Download or read book Condensed Matter Field Theory written by Alexander Altland and published by Cambridge University Press. This book was released on 2010-03-11 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.
Download or read book Quantum Many Body Systems written by Vincent Rivasseau and published by Springer. This book was released on 2012-06-25 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is based on the lectures given at the CIME school "Quantum many body systems" held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.
Download or read book Information Dynamics written by Thomas Dittrich and published by Springer Nature. This book was released on 2022-11-23 with total page 567 pages. Available in PDF, EPUB and Kindle. Book excerpt: This wide-ranging book introduces information as a key concept not only in physics, from quantum mechanics to thermodynamics, but also in the neighboring sciences and in the humanities. The central part analyzes dynamical processes as manifestations of information flows between microscopic and macroscopic scales and between systems and their environment. Quantum mechanics is interpreted as a reconstruction of mechanics based on fundamental limitations of information processing on the smallest scales. These become particularly manifest in quantum chaos and in quantum computing. Covering subjects such as causality, prediction, undecidability, chaos, and quantum randomness, the book also provides an information-theoretical view of predictability. More than 180 illustrations visualize the concepts and arguments. The book takes inspiration from the author's graduate-level topical lecture but is also well suited for undergraduate studies and is a valuable resource for researchers and professionals.
Download or read book Theory Of Critical Phenomena In Finite size Systems Scaling And Quantum Effects written by Jordan G Brankov and published by World Scientific. This book was released on 2000-08-21 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to familiarise the reader with the rich collection of ideas, methods and results available in the theory of critical phenomena in systems with confined geometry. The existence of universal features of the finite-size effects arising due to highly correlated classical or quantum fluctuations is explained by the finite-size scaling theory. This theory (1) offers an interpretation of experimental results on finite-size effects in real systems; (2) gives the most reliable tool for extrapolation to the thermodynamic limit of data obtained by computer simulations; (3) reveals the intimate mechanism of how the critical singularities build up in the thermodynamic limit; and (4) can be fruitfully used to explain the low-temperature behaviour of quantum critical systems.The exposition is given in a self-contained form which presumes the reader's knowledge only in the framework of standard courses on the theory of phase transitions and critical phenomena. The instructive role of simple models, both classical and quantum, is demonstrated by putting the accent on the derivation of rigorous and exact analytical results.
Download or read book The Quantum Mechanics of Many Body Systems written by D.J. Thouless and published by Courier Corporation. This book was released on 2014-01-15 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Unabridged republication of the second edition of the work, originally published in the Pure and applied physics series by Academic Press, Inc., New York, in 1972"--Title page verso.
Download or read book Quantum Many Body Physics in a Nutshell written by Edward Shuryak and published by Princeton University Press. This book was released on 2018-11-27 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ideal textbook for a one-semester introductory course for graduate students or advanced undergraduates This book provides an essential introduction to the physics of quantum many-body systems, which are at the heart of atomic and nuclear physics, condensed matter, and particle physics. Unlike other textbooks on the subject, it covers topics across a broad range of physical fields—phenomena as well as theoretical tools—and does so in a simple and accessible way. Edward Shuryak begins with Feynman diagrams of the quantum and statistical mechanics of a particle; in these applications, the diagrams are easy to calculate and there are no divergencies. He discusses the renormalization group and illustrates its uses, and covers systems such as weakly and strongly coupled Bose and Fermi gases, electron gas, nuclear matter, and quark-gluon plasmas. Phenomena include Bose condensation and superfluidity. Shuryak also looks at Cooper pairing and superconductivity for electrons in metals, liquid 3He, nuclear matter, and quark-gluon plasma. A recurring topic throughout is topological matter, ranging from ensembles of quantized vortices in superfluids and superconductors to ensembles of colored (QCD) monopoles and instantons in the QCD vacuum. Proven in the classroom, Quantum Many-Body Physics in a Nutshell is the ideal textbook for a one-semester introductory course for graduate students or advanced undergraduates. Teaches students how quantum many-body systems work across many fields of physics Uses path integrals from the very beginning Features the easiest introduction to Feynman diagrams available Draws on the most recent findings, including trapped Fermi and Bose atomic gases Guides students from traditional systems, such as electron gas and nuclear matter, to more advanced ones, such as quark-gluon plasma and the QCD vacuum
Download or read book Energy Landscapes Inherent Structures and Condensed Matter Phenomena written by Frank H. Stillinger and published by Princeton University Press. This book was released on 2015-11-17 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an authoritative and in-depth treatment of potential energy landscape theory, a powerful analytical approach to describing the atomic and molecular interactions in condensed-matter phenomena. Drawing on the latest developments in the computational modeling of many-body systems, Frank Stillinger applies this approach to a diverse range of substances and systems, including crystals, liquids, glasses and other amorphous solids, polymers, and solvent-suspended biomolecules. Stillinger focuses on the topography of the multidimensional potential energy hypersurface created when a large number of atoms or molecules simultaneously interact with one another. He explains how the complex landscape topography separates uniquely into individual "basins," each containing a local potential energy minimum or "inherent structure," and he shows how to identify interbasin transition states—saddle points—that reside in shared basin boundaries. Stillinger describes how inherent structures and their basins can be classified and enumerated by depth, curvatures, and other attributes, and how those enumerations lead logically from vastly complicated multidimensional landscapes to properties observed in the real three-dimensional world. Essential for practitioners and students across a variety of fields, the book illustrates how this approach applies equally to systems whose nuclear motions are intrinsically quantum mechanical or classical, and provides novel strategies for numerical simulation computations directed toward diverse condensed-matter systems.
Download or read book An Introduction to Quantum Monte Carlo Methods written by Tao Pang and published by Morgan & Claypool Publishers. This book was released on 2016-12-07 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods have been very prominent in computer simulation of various systems in physics, chemistry, biology, and materials science. This book focuses on the discussion and path-integral quantum Monte Carlo methods in many-body physics and provides a concise but complete introduction to the Metropolis algorithm and its applications in these two techniques. To explore the schemes in clarity, several quantum many-body systems are analysed and studied in detail. The book includes exercises to help digest the materials covered. It can be used as a tutorial to learn the discussion and path-integral Monte Carlo or a recipe for developing new research in the reader's own area. Two complete Java programs, one for the discussion Monte Carlo of 4^He clusters on a graphite surface and the other for the path-integral Monte Carlo of cold atoms in a potential trap, are ready for download and adoption.