EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Phase Noise Suppression Technique for Plls with Ring Oscillators

Download or read book Phase Noise Suppression Technique for Plls with Ring Oscillators written by 鄭伊涵 and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Phase Realignment and Phase Noise Suppression in PLLs and DLLs

Download or read book Phase Realignment and Phase Noise Suppression in PLLs and DLLs written by Sheng Ye and published by . This book was released on 2003 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Reduction and Cancellation of Phase Noise in Digital Frequency Synthesizers and Quadrature Receivers

Download or read book The Reduction and Cancellation of Phase Noise in Digital Frequency Synthesizers and Quadrature Receivers written by Zuow-Zun Chen and published by . This book was released on 2016 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Circuit and system techniques for reducing phase noise in frequency synthesizers, and cancelling phase noise effect in quadrature receivers are presented. Phase noise performance of digital phase-locked loops (PLLs) is limited by the time resolution of time-to-digital converters (TDC). In contrast to TDCs in the past that concentrate on the arrival time difference between the divider feedback edge and the reference signal edge. Our approach extracts the timing information that is embedded in voltage domain. This approach not only achieves a higher time resolution, lower phase noise, but also consumes less power. A digital background calibration circuit is also presented to reduce the output spurious tones when the digital PLL operates under fractional-N divisions. Ring Oscillators (ROs) have the advantage of small area, wide tuning range, and multiphase output. However, their higher phase noise and higher sensitivity to supply noise may seriously deteriorate the wanted signal in wireless receivers. To circumvent this non-ideality, a low overhead phase noise cancellation technique for ring oscillator-based quadrature receivers is presented. The proposed technique operates in background and extracts ring oscillator phase noise as well as supply-induced phase noise from the digital PLL. The obtained phase noise information is then used to restore the randomly rotated baseband signal in digital domain. In recent years, the unsilenced band at 57~64 GHz frequency range has motivated the building of high-data rate radio systems targeting wireless personal area network (WPAN) applications. To address this demand, a low-noise wide-band integer-N PLL is presented which serves as the carrier generator of a 60 GHz heterogeneous transceiver. The PLL employs sub-sampling phase detection technique to achieve low-noise performance, and provides 48 GHz LO and 12 GHz IF carrier signals for the heterogeneous transceiver.

Book The Designer s Guide to Jitter in Ring Oscillators

Download or read book The Designer s Guide to Jitter in Ring Oscillators written by John A. McNeill and published by Springer Science & Business Media. This book was released on 2009-04-09 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This guide emphasizes jitter for time domain applications so that there is not a need to translate from frequency domain. This provides a more direct path to the results for designing in an application area where performance is specified in the time domain. The book includes classification of oscillator types and an exhaustive guide to existing research literature. It also includes classification of measurement techniques to help designers understand how the eventual performance of circuit design is verified.

Book Phase Noise in Signal Sources

Download or read book Phase Noise in Signal Sources written by W. P. Robins and published by IET. This book was released on 1984 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a thorough treatment of phase noise, its relationship to thermal noise and associated subjects such as frequency stability. The design of low phase noise signal sources, including oscillators and synthesisers, is explained and in many cases the measured phase noise characteristics are compared with the theoretical predictions. Full theoretical treatments are combined with physical explanations, helpful comments, examples of manufactured equipment and practical tips. Overall system performance degradations due to unwanted phase noise are fully analysed for radar systems and for both analogue and digital communications systems. Specifications for the acceptable phase noise performance of signal sources to be used in such systems are derived after allowing for both technical and economic optimisation. The mature engineer whose mathematics may be somewhat rusty will find that every effort has been made to use the lowest level of mathematical sophistication that is compatible with a full analysis and every line of each mathematical argument has been set out so that the book may be read and understood even in an armchair. Due to a novel approach to the analytical treatment of narrow band noise, the book is simple to understand while simultaneously carrying the analysis further in several areas than any existing publication.

Book Understanding Jitter and Phase Noise

Download or read book Understanding Jitter and Phase Noise written by Nicola Da Dalt and published by Cambridge University Press. This book was released on 2018-02-22 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain an intuitive understanding of jitter and phase noise with this authoritative guide. Leading researchers provide expert insights on a wide range of topics, from general theory and the effects of jitter on circuits and systems, to key statistical properties and numerical techniques. Using the tools provided in this book, you will learn how and when jitter and phase noise occur, their relationship with one another, how they can degrade circuit performance, and how to mitigate their effects - all in the context of the most recent research in the field. Examine the impact of jitter in key application areas, including digital circuits and systems, data converters, wirelines, and wireless systems, and learn how to simulate it using the accompanying Matlab code. Supported by additional examples and exercises online, this is a one-stop guide for graduate students and practicing engineers interested in improving the performance of modern electronic circuits and systems.

Book Analysis and Design of CMOS Clocking Circuits for Low Phase Noise

Download or read book Analysis and Design of CMOS Clocking Circuits for Low Phase Noise written by Woorham Bae and published by . This book was released on 2020 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: "As electronics continue to become faster, smaller and more efficient, development and research around clocking signals and circuits has accelerated to keep pace. This book bridges the gap between the classical theory of clocking circuits and recent technological advances, making it a useful guide for newcomers to the field, and offering an opportunity for established researchers to broaden and update their knowledge of current trends. The book begins by introducing the theory of Fourier transform and power spectral density, then builds on this foundation in chapter 2 to define phase noise and jitter. Chapter 3 discusses the theory and primary implementation of CMOS oscillators, including LC oscillators and ring oscillators, and chapter 4 introduces techniques for analysing their phase noise and jitter. Chapters 5-7 cover conventional clocking circuits; phase-locked loop (PLL) and delay-locked loop (DLL), which suppress the phase noise of CMOS oscillators. The building blocks of conventional PLLs/DLLs are described, and the dynamics of the PLL/DLL negative feedback loop explored in depth, with practical design examples. Chapters 8-11 address state-of-the-art circuit techniques for phase noise suppression, presenting the principles and practical issues in circuit implementation of sub-sampling phase detection techniques, all-digital PLL/DLL, injection-locked oscillator, and clock multiplying DLL. Extensive survey and discussion on state-of-the-art clocking circuits and benchmarks are covered in an Appendix"--

Book Analysis and Design of CMOS Clocking Circuits For Low Phase Noise

Download or read book Analysis and Design of CMOS Clocking Circuits For Low Phase Noise written by Woorham Bae and published by Institution of Engineering and Technology. This book was released on 2020-06-24 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: As electronics continue to become faster, smaller and more efficient, development and research around clocking signals and circuits has accelerated to keep pace. This book bridges the gap between the classical theory of clocking circuits and recent technological advances, making it a useful guide for newcomers to the field, and offering an opportunity for established researchers to broaden and update their knowledge of current trends.

Book Design of CMOS Phase Locked Loops

Download or read book Design of CMOS Phase Locked Loops written by Behzad Razavi and published by Cambridge University Press. This book was released on 2020-01-30 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using a modern, pedagogical approach, this textbook gives students and engineers a comprehensive and rigorous knowledge of CMOS phase-locked loop (PLL) design for a wide range of applications. It features intuitive presentation of theoretical concepts, built up gradually from their simplest form to more practical systems; broad coverage of key topics, including oscillators, phase noise, analog PLLs, digital PLLs, RF synthesizers, delay-locked loops, clock and data recovery circuits, and frequency dividers; tutorial chapters on high-performance oscillator design, covering fundamentals to advanced topologies; and extensive use of circuit simulations to teach design mentality, highlight design flaws, and connect theory with practice. Including over 200 thought-provoking examples highlighting best practices and common pitfalls, 250 end-of-chapter homework problems to test and enhance the readers' understanding, and solutions and lecture slides for instructors, this is the perfect text for senior undergraduate and graduate-level students and professional engineers who want an in-depth understanding of PLL design.

Book Design of High Performance CMOS Voltage Controlled Oscillators

Download or read book Design of High Performance CMOS Voltage Controlled Oscillators written by Liang Dai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design of High-Performance CMOS Voltage-Controlled Oscillators presents a phase noise modeling framework for CMOS ring oscillators. The analysis considers both linear and nonlinear operation. It indicates that fast rail-to-rail switching has to be achieved to minimize phase noise. Additionally, in conventional design the flicker noise in the bias circuit can potentially dominate the phase noise at low offset frequencies. Therefore, for narrow bandwidth PLLs, noise up conversion for the bias circuits should be minimized. We define the effective Q factor (Qeff) for ring oscillators and predict its increase for CMOS processes with smaller feature sizes. Our phase noise analysis is validated via simulation and measurement results. The digital switching noise coupled through the power supply and substrate is usually the dominant source of clock jitter. Improving the supply and substrate noise immunity of a PLL is a challenging job in hostile environments such as a microprocessor chip where millions of digital gates are present.

Book Pll Performance  Simulation and Design

Download or read book Pll Performance Simulation and Design written by Dean Banerjee and published by Dog Ear Publishing. This book was released on 2006-08 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for the reader who wishes to gain a solid understanding of Phase Locked Loop architectures and their applications. It provides a unique balance between both theoretical perspectives and practical design trade-offs. Engineers faced with real world design problems will find this book to be a valuable reference providing example implementations, the underlying equations that describe synthesizer behavior, and measured results that will improve confidence that the equations are a reliable predictor of system behavior. New material in the Fourth Edition includes partially integrated loop filter implementations, voltage controlled oscillators, and modulation using the PLL.

Book Phase Noise Processes and Suppression Techniques in RF LC Voltage controlled Oscillators

Download or read book Phase Noise Processes and Suppression Techniques in RF LC Voltage controlled Oscillators written by Stephen Justin Mallin and published by . This book was released on 2006 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Design of Low Noise Oscillators

Download or read book The Design of Low Noise Oscillators written by Ali Hajimiri and published by Springer Science & Business Media. This book was released on 2007-05-08 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is hardly a revelation to note that wireless and mobile communications have grown tremendously during the last few years. This growth has placed stringent requi- ments on channel spacing and, by implication, on the phase noise of oscillators. C- pounding the challenge has been a recent drive toward implementations of transceivers in CMOS, whose inferior 1/f noise performance has usually been thought to disqualify it from use in all but the lowest-performance oscillators. Low noise oscillators are also highly desired in the digital world, of course. The c- tinued drive toward higher clock frequencies translates into a demand for ev- decreasing jitter. Clearly, there is a need for a deep understanding of the fundamental mechanisms g- erning the process by which device, substrate, and supply noise turn into jitter and phase noise. Existing models generally offer only qualitative insights, however, and it has not always been clear why they are not quantitatively correct.

Book A Novel Oscillator Phase Noise Reduction Technique

Download or read book A Novel Oscillator Phase Noise Reduction Technique written by Ali Mohamed Darwish and published by . This book was released on 1991 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Low Noise Low Power Design for Phase Locked Loops

Download or read book Low Noise Low Power Design for Phase Locked Loops written by Feng Zhao and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces low-noise and low-power design techniques for phase-locked loops and their building blocks. It summarizes the noise reduction techniques for fractional-N PLL design and introduces a novel capacitive-quadrature coupling technique for multi-phase signal generation. The capacitive-coupling technique has been validated through silicon implementation and can provide low phase-noise and accurate I-Q phase matching, with low power consumption from a super low supply voltage. Readers will be enabled to pick one of the most suitable QVCO circuit structures for their own designs, without additional effort to look for the optimal circuit structure and device parameters.

Book Monolithic Phase Locked Loops and Clock Recovery Circuits

Download or read book Monolithic Phase Locked Loops and Clock Recovery Circuits written by Behzad Razavi and published by John Wiley & Sons. This book was released on 1996-04-18 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring an extensive 40 page tutorial introduction, this carefully compiled anthology of 65 of the most important papers on phase-locked loops and clock recovery circuits brings you comprehensive coverage of the field-all in one self-contained volume. You'll gain an understanding of the analysis, design, simulation, and implementation of phase-locked loops and clock recovery circuits in CMOS and bipolar technologies along with valuable insights into the issues and trade-offs associated with phase locked systems for high speed, low power, and low noise.