EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Phase Estimation in Optical Interferometry

Download or read book Phase Estimation in Optical Interferometry written by Pramod Rastogi and published by CRC Press. This book was released on 2014-11-21 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the essentials of phase-stepping algorithms used in interferometry and pseudointerferometric techniques. It presents the basic concepts and mathematics needed for understanding modern phase estimation methods. The book first focuses on phase retrieval from image transforms using a single frame. It then examines the local environment of a fringe pattern, the phase estimation approach based on local polynomial phase modeling, temporal high-resolution phase evaluation methods, and methods of phase unwrapping. It also discusses experimental imperfections liable to adversely influence the accuracy of phase measurements.

Book Quantum enhanced Phase Estimation in Optical Interferometry

Download or read book Quantum enhanced Phase Estimation in Optical Interferometry written by Jaspreet Sahota and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum-enhanced interferometers utilize non-classical states of light in order to surpass the limitations imposed by classical physics on phase measurement sensitivity and resolution. We review key scientific developments in this growing field of research and derive fundamental metrology concepts, namely the Cram\'{e}r-Rao bound and the Fisher information, which are used to analyze the metrological performance of quantum states of light. We propose a supersensitive quantum interferometry protocol that can be amplified to the macroscopic realm (i.e. the mean number of photons of the probe state can reach approximately 100,000 photons) using contemporary techniques of spontaneous parametric down conversion. The parity measurement on the output field asymptotically saturates the quantum Cram\'{e}r-Rao bound, which scales like the Heisenberg limit. We uncover the role of photon statistics on phase sensitivity and rule out the necessity of mode entanglement for quantum-enhanced interferometry. Based on these insights we outline a practical metrology technique (independent of mode entanglement) that measures a phase delay of a single-mode anti-squeezing operation. This scheme can also be scaled macroscopically using contemporary techniques and is shown to significantly surpass the shot-noise limit (SNL) in the presence of realistic losses. Finally, the physical resources that enable quantum-enhanced interferometry is studied by analyzing the quantum Fisher information (QFI) using the first quantization and the second quantization formalisms of quantum mechanics. It is shown that increasing the intra-mode correlations of an interferometer (as quantified by the second order Glauber coherence function) can be conducive to attaining a quantum advantage in phase estimation; whereas, introducing mode entanglement can reduce phase sensitivity. Using the first quantization description, we derive a formula for the QFI that shows explicitly how the Heisenberg scaling term depends on particle entanglement.

Book Iterative Phase Estimation Algorithms in Interferometric Systems

Download or read book Iterative Phase Estimation Algorithms in Interferometric Systems written by Wesley E. Farriss and published by . This book was released on 2021 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Coherent optical interferometry has a long history of enabling extremely precise measurements at length scales of less than the wavelength of light used in the interferometer. It is the ability of these systems to measure both the relative phase and amplitude information of the optical field that makes them so useful. As the name would imply, measuring phase and amplitude is accomplished by interfering two or more beams of light. Interferometric techniques have been adopted for use in both imaging/sensing technologies. For imaging systems under ideal conditions, the ability to measure both phase and amplitude information in one transverse plane allows for the calculation of that field's phase and amplitude distribution in any other transverse plane. However, the presence of atmospheric turbulence unpredictably alters the index of refraction in the propagation medium thereby adversely affecting the reliability of calculation of phase and amplitude in other transverse planes. To address this problem, we demonstrate iterative sharpness maximization (ISM) correction of anisoplanatic turbulence effects in simulated range-compressed holography (RCH) fields and their corresponding range images. Our turbulence correction estimated four phase screens placed along the path of optical propagation using nonlinear optimizations aided by the method of sieves technique. We conducted a study of range images created from simulated single speckle realization 3D RCH fields subjected to twenty different turbulence profiles at five different strengths of turbulence, D/r0 = 7, 14, 21, 28, and 36. Range images showed significant improvement for all strengths of turbulence. To assist in correction, we introduced a novel constraint limiting the spread of energy in the corrected pupil. Corrected range images were qualitatively very similar to unaberrated range images in all but the most severe turbulence case, D/r0 = 36. Additionally, our algorithm was tested for fields affected by shot noise. Mean target photons per speckle ranged from 10 -2 to 10 2 in these simulations. For an effective D/r0 = 36, range images corrected from fields with 102 mean photons per speckle had very similar RMSE when compared to corrected noiseless range images. On average, corrected range images created from fields with 1 mean target photon per speckle differed by less than 5% RMSE from noiseless corrected range images. We went on to construct a RCH system in a laboratory setting using a linear frequency modulated CW laser and a high frame rate camera which allowed us to create 3D images of laboratory targets. Data was collected both with and without the effects of turbulence. In the former, multiple Lexitek turbulence screens were used to aberrate the image fields of our lab target at two different effective strengths of anisoplanatic turbulence, D/r0 = 7 and D/r0 = 16, respectively. Both of these sets of real aberrated image fields showed profound improvement in quality after correction with our phase ISM turbulence mitigation algorithm. Novel interferometric systems are also being developed which enable modal analysis of an optical field. This generalized optical interferometry (GOI) treats coherent optical fields as a linear superposition of transverse modes and recovers the amplitudes of modal weighting coefficients. In order to maximize the utility of these systems, we used phase retrieval by nonlinear optimization to recover the phase of these modal weighting coefficients. Algorithms were developed both for use with an array detector and for use with a bucket detector. Information diversity increased the robustness of both algorithms by better constraining the solutions. In our array detection phase retrieval, the algorithm was able to recover nearly all coefficient phases for simulated fields consisting of up to 21 superpositioned Hermite Gaussian modes from simulated data and proved to be resilient to shot noise. Similarly, the algorithm we developed using data from a simulated bucket detector was able to consistently recover better than 95% of coefficient phases for simulated random fields consisting of up to 21 superpositioned Hermite Gaussian modes using between three and seven measurements per unknown phase coefficient. With shot noise, the algorithm achieved performance on par with noiseless simulations with 106 mean signal photons per measurement. The role played by number of measurements per unknown (mpu), photons per unknown per measurement (ppu), and order of superposition in the bucket detection algorithm's performance was also explored"--Pages xvi-xix

Book Phase Estimation Methods and Their Application to Holographic Interferometry

Download or read book Phase Estimation Methods and Their Application to Holographic Interferometry written by Rajesh Langoju and published by . This book was released on 2006 with total page 106 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Optical Interferometry

Download or read book Optical Interferometry written by Alexandr Banishev and published by BoD – Books on Demand. This book was released on 2017-02-15 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical methods of measurements are the most sensitive techniques of noncontact investigations, and at the same time, they are fast as well as accurate which increases reproducibility of observed results. In recent years, the importance of optical interferometry methods for research has dramatically increased, and applications range from precise surface testing to finding extrasolar planets. This book covers various aspects of optical interferometry including descriptions of novel apparatuses and methods, application interferometry for studying biological objects, surface qualities, materials characterization, and optical testing. The book includes a series of chapters in which experts share recent progress in interferometry through original research and literature reviews.

Book Optical Interferometry  2e

Download or read book Optical Interferometry 2e written by P. Hariharan and published by Elsevier. This book was released on 2003-10-20 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: When the first edition of Optical Interferometry was published, interferometry was regarded as a rather esoteric method of making measurements, largely confined to the laboratory. Today, however, besides its use in several fields of research, it has applications in fields as diverse as measurement of length and velocity, sensors for rotation, acceleration, vibration and electrical and magnetic fields, as well as in microscopy and nanotechnology. Most topics are discussed first at a level accessible to anyone with a basic knowledge of physical optics, then a more detailed treatment of the topic is undertaken, and finally each topic is supplemented by a reference list of more than 1000 selected original publications in total. Historical development of interferometry The laser as a light source Two-beam interference Techniques for frequency stabilization Coherence Electronic phase measurements Multiple-beam interference Quantum effects in optical interference Extensive coverage of the applications of interferometry, such as measurements of length, optical testing, interference microscopy, interference spectroscopy, Fourier-transform spectroscopy, interferometric sensors, nonlinear interferometers, stellar interferometry, and studies of space-time and gravitation

Book Optical Shop Testing

    Book Details:
  • Author : Daniel Malacara
  • Publisher : John Wiley & Sons
  • Release : 2007-07-16
  • ISBN : 0471484040
  • Pages : 882 pages

Download or read book Optical Shop Testing written by Daniel Malacara and published by John Wiley & Sons. This book was released on 2007-07-16 with total page 882 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this third edition is to bring together in a single book descriptions of all tests carried out in the optical shop that are applicable to optical components and systems. This book is intended for the specialist as well as the non-specialist engaged in optical shop testing. There is currently a great deal of research being done in optical engineering. Making this new edition very timely.

Book Single and Multicomponent Digital Optical Signal Analysis

Download or read book Single and Multicomponent Digital Optical Signal Analysis written by Pramod K. Rastogi and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "A review of the tools and methods of multicomponent fringe analysis and interferometric data, including a wide range of digital signal-processing-based interferometric data-processing techniques."--Prové de l'editor.

Book Optical Interferometry  2e

Download or read book Optical Interferometry 2e written by P. Hariharan and published by Academic Press. This book was released on 2003-09-22 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanotechnology, sensor and measurement industries depend on these advances in optical interferometry for accuracy and profitability.

Book Optical Inspection of Microsystems  Second Edition

Download or read book Optical Inspection of Microsystems Second Edition written by Wolfgang Osten and published by CRC Press. This book was released on 2019-06-21 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Where conventional testing and inspection techniques fail at the microscale, optical techniques provide a fast, robust, noninvasive, and relatively inexpensive alternative for investigating the properties and quality of microsystems. Speed, reliability, and cost are critical factors in the continued scale-up of microsystems technology across many industries, and optical techniques are in a unique position to satisfy modern commercial and industrial demands. Optical Inspection of Microsystems, Second Edition, extends and updates the first comprehensive survey of the most important optical measurement techniques to be successfully used for the inspection of microsystems. Under the guidance of accomplished researcher Wolfgang Osten, expert contributors from industrial and academic institutions around the world share their expertise and experience with techniques such as image processing, image correlation, light scattering, scanning probe microscopy, confocal microscopy, fringe projection, grid and moire techniques, interference microscopy, laser-Doppler vibrometry, digital holography, speckle metrology, spectroscopy, and sensor fusion technologies. They also examine modern approaches to data acquisition and processing, such as the determination of surface features and the estimation of uncertainty of measurement results. The book emphasizes the evaluation of various system properties and considers encapsulated components to increase quality and reliability. Numerous practical examples and illustrations of optical testing reinforce the concepts. Supplying effective tools for increased quality and reliability, this book Provides a comprehensive, up-to-date overview of optical techniques for the measurement and inspection of microsystems Discusses image correlation, displacement and strain measurement, electro-optic holography, and speckle metrology techniques Offers numerous practical examples and illustrations Includes calibration of optical measurement systems for the inspection of MEMS Presents the characterization of dynamics of MEMS

Book Fringe Pattern Analysis for Optical Metrology

Download or read book Fringe Pattern Analysis for Optical Metrology written by Manuel Servin and published by John Wiley & Sons. This book was released on 2014-08-18 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main objective of this book is to present the basic theoretical principles and practical applications for the classical interferometric techniques and the most advanced methods in the field of modern fringe pattern analysis applied to optical metrology. A major novelty of this work is the presentation of a unified theoretical framework based on the Fourier description of phase shifting interferometry using the Frequency Transfer Function (FTF) along with the theory of Stochastic Process for the straightforward analysis and synthesis of phase shifting algorithms with desired properties such as spectral response, detuning and signal-to-noise robustness, harmonic rejection, etc.

Book Practical Optical Interferometry

Download or read book Practical Optical Interferometry written by David F. Buscher and published by Cambridge University Press. This book was released on 2015-07-28 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optical interferometry is a powerful technique to make images on angular scales hundreds of times smaller than is possible with the largest telescopes. This concise guide provides an introduction to the technique for graduate students and researchers who want to make interferometric observations and acts as a reference for technologists building new instruments. Starting from the principles of interference, the author covers the core concepts of interferometry, showing how the effects of the Earth's atmosphere can be overcome using closure phase, and the complete process of making an observation, from planning to image reconstruction. This rigorous approach emphasizes the use of rules-of-thumb for important parameters such as the signal-to-noise ratios, requirements for sampling the Fourier plane and predicting image quality. The handbook is supported by web resources, including the Python source code used to make many of the graphs, as well as an interferometry simulation framework, available at www.cambridge.org/9781107042179.

Book Phase In Optics

    Book Details:
  • Author : Myron W Evans
  • Publisher : World Scientific
  • Release : 1998-10-05
  • ISBN : 9814497169
  • Pages : 463 pages

Download or read book Phase In Optics written by Myron W Evans and published by World Scientific. This book was released on 1998-10-05 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the classical and quantum phases in wave and particle optics from the viewpoint of both theory and applications. Wave and beam light optics are reviewed in considerable detail, featuring optical imaging and holography in linear optics and phase conjugation methods in nonlinear optics. Photon optics is embodied here as quantum optics with the modes treated as quantum harmonic oscillators. The importance of the Wigner function for the phase space description in the context of canonical quantization is respected and the method of quasidistributions related to operator orderings in the second-quantized theory is exposed. The history of the quantum phase problem, characterized by renewed interest in the solution to the problem, is included and brought up to date. Approaches based on exponential phase operators, discrete phase states, the enlargement of the Hilbert space of the harmonic oscillator leading to the phase representations and distributions, together with solutions motivated by the quasidistributions, are introduced. The operational approach to the quantum phase is contrasted with the previous formalisms. The results of the study of the coherent states and the ordinary squeezed states from the viewpoint of the quantum phase and those of the analysis of the quantum statistics of phase-related special states of the light field are provided. The quantum phase is also treated with respect to quantum interferometry, particle interferometry, nonlinear optical processes, and quantum nondemolition measurements.The book will prove indispensable to research workers in general optics, quantum optics and electronics, optoelectronics, and nonlinear optics, as well as to students of physics, optics, optoelectronics, photonics, and optical engineering.

Book Single and Multicomponent Digital Optical Signal Analysis

Download or read book Single and Multicomponent Digital Optical Signal Analysis written by P Rastogi and published by Myprint. This book was released on 2017-09-06 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Atom Interferometry

    Book Details:
  • Author : G.M. Tino
  • Publisher : IOS Press
  • Release : 2014-10-16
  • ISBN : 161499448X
  • Pages : 807 pages

Download or read book Atom Interferometry written by G.M. Tino and published by IOS Press. This book was released on 2014-10-16 with total page 807 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since atom interferometers were first realized about 20 years ago, atom interferometry has had many applications in basic and applied science, and has been used to measure gravity acceleration, rotations and fundamental physical quantities with unprecedented precision. Future applications range from tests of general relativity to the development of next-generation inertial navigation systems. This book presents the lectures and notes from the Enrico Fermi school "Atom Interferometry", held in Varenna, Italy, in July 2013. The aim of the school was to cover basic experimental and theoretical aspects and to provide an updated review of current activities in the field as well as main achievements, open issues and future prospects. Topics covered include theoretical background and experimental schemes for atom interferometry; ultracold atoms and atom optics; comparison of atom, light, electron and neutron interferometers and their applications; high precision measurements with atom interferometry and their application to tests of fundamental physics, gravitation, inertial measurements and geophysics; measurement of fundamental constants; interferometry with quantum degenerate gases; matter wave interferometry beyond classical limits; large area interferometers; atom interferometry on chips; and interferometry with molecules. The book will be a valuable source of reference for students, newcomers and experts in the field of atom interferometry.

Book Diffraction Limited Imaging with Very Large Telescopes

Download or read book Diffraction Limited Imaging with Very Large Telescopes written by D.M. Alloin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: A few years ago, a real break-through happened in observational astronomy: the un derstanding of the effect of atmospheric turbulence on the structure of stellar images, and of ways to overcome this dramatic degradation. This opened a route to diffraction-limited observations with large telescopes in the optical domain. Soon, the first applications of this new technique led to some outstanding astrophysical results, both at visible and infrared wavelengths. Yet, the potential of interferometric observations is not fully foreseeable as the first long-baseline arrays of large optical telescopes are being built or cOIIllnissioned right now. In this respect a comparison with the evolution of radio-astronomy is tempting. From a situation where, in spite of the construction of giant antennas, low angular resolution was prevailing, the introduction of long baseline and very long baseline interferometry and the rapid mastering of sophisticated image reconstruction techniques, have brought on a nearly routine basis high dynamic range images with milliarcseconds resolution. This, of course, has completely changed our views of the radio sky.

Book The Illustrated Wavelet Transform Handbook

Download or read book The Illustrated Wavelet Transform Handbook written by Paul S. Addison and published by CRC Press. This book was released on 2017-01-06 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance has been fully updated and revised to reflect recent developments in the theory and practical applications of wavelet transform methods. The book is designed specifically for the applied reader in science, engineering, medicine and finance. Newcomers to the subject will find an accessible and clear account of the theory of continuous and discrete wavelet transforms, while readers already acquainted with wavelets can use the book to broaden their perspective. One of the many strengths of the book is its use of several hundred illustrations, some in colour, to convey key concepts and their varied practical uses. Chapters exploring these practical applications highlight both the similarities and differences in wavelet transform methods across different disciplines and also provide a comprehensive list of over 1000 references that will serve as a valuable resource for further study. Paul Addison is a Technical Fellow with Medtronic, a global medical technology company. Previously, he was co-founder and CEO of start-up company, CardioDigital Ltd (and later co-founded its US subsidiary, CardioDigital Inc) - a company concerned with the development of novel wavelet-based methods for biosignal analysis. He has a master’s degree in engineering and a PhD in fluid mechanics, both from the University of Glasgow, Scotland (founded 1451). His former academic life as a tenured professor of fluids engineering included the output of a large number of technical papers, covering many aspects of engineering and bioengineering, and two textbooks: Fractals and Chaos: An Illustrated Course and the first edition of The Illustrated Wavelet Transform Handbook. At the time of publication, the author has over 100 issued US patents concerning a wide range of medical device technologies, many of these concerning the wavelet transform analysis of biosignals. He is both a Chartered Engineer and Chartered Physicist.