EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Fundamentals of Basin and Petroleum Systems Modeling

Download or read book Fundamentals of Basin and Petroleum Systems Modeling written by Thomas Hantschel and published by Springer Science & Business Media. This book was released on 2009-04-09 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive presentation of methods and algorithms used in basin modeling, this text provides geoscientists and geophysicists with an in-depth view of the underlying theory and includes advanced topics such as probabilistic risk assessment methods.

Book Petroleum Geochemistry of the Canning Basin Western Australia

Download or read book Petroleum Geochemistry of the Canning Basin Western Australia written by K. A. R. Ghori and published by . This book was released on 2006 with total page 66 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Perth Basin  Western Australia

Download or read book Perth Basin Western Australia written by S. J. Cadman and published by . This book was released on 1994 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Western Australia Atlas of Petroleum Fields

Download or read book Western Australia Atlas of Petroleum Fields written by Dianne Owad-Jones and published by . This book was released on 2000 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Geology and Petroleum Prospectivity of State Acreage Release Area L10 12  Onshore Northern Perth Basin  Western Australia

Download or read book Geology and Petroleum Prospectivity of State Acreage Release Area L10 12 Onshore Northern Perth Basin Western Australia written by and published by . This book was released on 2010 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Evaluating Petroleum Systems Using Advanced Geochemistry and Basin Modeling

Download or read book Evaluating Petroleum Systems Using Advanced Geochemistry and Basin Modeling written by Meng He and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade, three-dimensional (3-D) basin and petroleum system modeling of the subsurface through geological time has evolved as a major research focus of both the petroleum industry and academia. The major oil companies have independently recognized the need for basin and petroleum system modeling to archive data, facilitate visualization of risk, convert static data into dynamic processed data, and provide an approach to evaluate potential prospects in oil and gas exploration. Basin and petroleum system modeling gives geoscientists the opportunity to examine the dynamics of sedimentary basins and their associated fluids to determine if past conditions were suitable for hydrocarbons to fill potential reservoirs and be preserved there. The success of any exploration campaign requires basin and petroleum system modeling as a methodology to predict the likelihood of success given available data and associated uncertainties. It is not guaranteed that hydrocarbons will be found by drilling a closed subsurface structure. Early petroleum system studies began more than 50 years ago. Geoscientists seek to describe how basins form, fill and deform, focusing mainly on compacting sediments and the resulting rock structures. Since then, tremendous efforts have been concentrated on developing methods to model these geological processes quantitatively. Studies such as applying mathematical algorithms to seismic, stratigraphic, palentologic, petrophysical data, and well logs were employed to reconstruct the evolution of sedimentary basins. In the early 1970s, geochemists developed methods to predict the petroleum generation potentials of source rocks in quantitative terms. After that, they began to use sedimentary basin models as geological frameworks for correlations between hydrocarbons and their potential source rocks. Since then, many concepts have been widely used in the petroleum industry, such as oil system, hydrocarbon system, hydrocarbon machine, and petroleum system. The term "petroleum system" is now commonly used in the industry. A petroleum system comprises a pod of active source rock and the oil and gas derived from it as established by geochemical correlation. The concept embodies all of the geologic elements and processes needed for oil and gas to accumulate. The essential elements include effective source rock, reservoir, seal and overburden rock. The processes include trap formation and the generation, migration and accumulation of petroleum. These elements and processes must occur in a proper order for the organic matter in a source rock to be converted into petroleum and then preserved. Absence of any of those elements can cause a dry prospect. In this dissertation, we use "basin and petroleum system modeling" (BPSM) as a method to track the evolution of a basin through geological time as it fills with sediments that could generate or contain hydrocarbons. We could also use it to evaluate and predict undiscovered conventional and unconventional hydrocarbon resources and to further understand the controls on petroleum generation, migration, accumulation. In deterministic forward modeling, basin and petroleum system processes are modeled from past to present using inferred starting conditions. Basin and petroleum system modeling is analogous to a reservoir simulation, but BPSM represents dynamic simulation through geological time. All of the dynamic processes in the basin and petroleum system modeling can be examined at several levels, and complexity typically increases with spatial dimensionality. The simplest is 1D modeling which examines burial history at a point location in a pseudowell. Two-dimensional modeling can be used to reconstruct oil and gas generation, migration and accumulation along a cross section. Three-dimensional modeling reconstructs petroleum systems at reservoir and basin scales and has the ability to display the output in 1D, 2D or 3D and through time. In general, which modeling approach is chosen depends on the purpose of the study and the types of problems to be resolved. Basin and petroleum system modeling continues to grow in importance as a tool to understand subsurface geology and basin evolution by integrating key aspects from geochemistry, geology, geophysics and stratigraphy. Among the above key aspects, geochemistry is the most important tool to understand the processes affecting petroleum systems. Better understanding of petroleum systems improves exploration efficiency. The first step in identifying petroleum systems is to characterize and map the geographic distribution of oil and gas types. Geochemical tools such as biomarkers, diamondoids and carbon isotope analysis are used to conduct oil-oil and oil-source correlation, which is key to understand and determine the geographic extent of petroleum systems in the basin. Chapter 1 offers a good example of how basin and petroleum system modeling and geochemistry improve understanding of active petroleum systems in the San Joaquin Basin, California. The modeling results indicate that there could be a deep, previously unrecognized source rock in the study area. Chapter 2 is a detailed unconventional geochemical analysis (i.e., diamondoid analysis, compound-specific isotopes of biomarkers and diamondoids) on petroleum systems in Arctic (Barents Sea and northern Timan Pechora Basin) to investigate deep sources in that area. Cutting-edge geochemical analyses were conducted in this project to identify the oil-oil and oil-source relationships and further understand reservoir filling histories and migration pathways. Since the deep source is at a great depth, thermal cracking always occurred in the source or the deeply buried reservoir, thus generating light hydrocarbons and gas. In addition, we hope to better understand the geochemical characteristics of worldwide Phanerozoic source rocks (Paleozoic source rock in Barents Sea-Timan Pechora area, Mesozoic and Cenozoic source rocks in the Vallecitos syncline in San Joaquin Basin). These results could also provide valuable input data for building basin and petroleum system models in the Arctic area once more data become available. Chapter 1 is a study of using basin modeling and geochemical analysis to evaluate the active source rocks in the Vallecitos syncline, San Joaquin Basin, and improve our understanding of burial history and the timing of hydrocarbon generation. Our earlier 1D modeling indicated that there could be two active source rocks in the syncline: Eocene Kreyenhagen and Cretaceous Moreno formations. The results differ from earlier interpretations that the Kreyenhagen Formation was the only source rock in the Vallecitos syncline, and suggest that the bottom of the Cretaceous Moreno Formation in the syncline reached thermal maturity as early as 42 Ma. The synclinal Eocene Kreyenhagen Formation became thermally mature as early as 19 Ma. Thick (~2 km) overburden rock in the central part of the syncline with additional heating from a thermal anomaly pushed the shallow Eocene Kreyenhagen source rock into the oil window in very recent times. In contrast, the Cretaceous Moreno source rock reached extremely high maturity (past the dry gas window). The 2D model results indicate that the bottom part of the Kreyenhagen Formation is in the mature stage of hydrocarbon generation and that the formation remains immature on the flanks of the present-day syncline. In contrast, the bottom part of the Moreno Formation achieved the gas generation zone and is in the oil generation zone on the flanks of the syncline. Biomarker analysis was conducted on 22 oil samples from the syncline. Source-related biomarkers show two genetic groups, which originated from two different source rocks. The 2D model results are supported by biomarker geochemistry and are also consistent with our earlier 1D burial history model in the Vallecitos syncline. In addition, we identified two potential petroleum systems in the Vallecitos syncline. The basin models for this study were conducted by me and Stephan Graham, Allegra Hosford Scheirer, Carolyn Lampe, Leslie Magoon. The detailed geological data was provided by Stephan Graham. The modeling related references and fundamental data were provided by Allegra Hosford Scheirer, but I conducted the modeling. The geochemical laboratory work and data analysis has been completed by me and supervised by Mike Moldowan and Kenneth Peters. The funding for this project was contributed by Basin and Petroleum System Modeling (BPSM) and molecular organic geochemistry industrial affiliates (MOGIA) programs. This chapter was submitted to Marine and Petroleum Geology with co-authors Stephan Graham, Allegra Hosford Scheirer and Kenneth Peters. All co-authors contributed important ideas, discussion, and guidance. Chapter 2 documents the existing deep source in the Barents Sea and northern Timan-Pechora Basin. Total thirty-four oil samples were analyzed to understand the types and distributions of effective source rocks and evaluate the geographic extent of the petroleum systems in the study area. Taxon-specific, age-related and source--related biomarkers and isotope data provided information on the depositional environment of the source rock, source input, and source age of the oil samples. A relationship between biomarker and diamondoid concentration was used to identify mixed oils having both oil-window and highly cracked components. Compound-specific isotope analyses of diamondoids and n-alkanes were used to deconvolute co-sourced oils and identify deep source rocks in the basin. The results suggest five major source rocks in the Barents Sea and the northern Timan-Pechora Basin: Upper Jurassic shale, Lower-Middle Jurassic shale, Triassic carbonate/shale, Devonian marl and Devonian carbonate. The Upper and Lower-Middle Jurassic source rocks are dominant in the Barents Sea. Triassic source rock consists of carbonate in the ons ...

Book Petroleum and Basin Evolution

Download or read book Petroleum and Basin Evolution written by Dietrich H. Welte and published by Springer. This book was released on 2011-09-27 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been prepared by the collaborative effort of two somewhat separate technical groups: the researchers at the Institute for Petroleum and Organic Geochemistry, Forschungszentrum Jii lich (KFA), and the technical staff of Integrated Exploration Systems (IES). One of us, Donald R. Baker, from Rice University, Houston, has spent so much time at KFA as a guest scientist and researcher that it is most appropriate for him to contribute to the book. During its more than 20-year history the KFA group has made numerous and significant contributions to the understanding of petroleum evolution. The KFA researchers have emphasized both the field and laboratory approaches to such important problems as source rock recognition and evaluation, oil and gas generation, maturation of organic matter, expulsion and migration of hydrocarbons, and crude oil composition and alteration. IES Jiilich has been a leader in the development and application of numerical simulation (basin modeling) procedures. The cooperation between the two groups has resulted in a very fruitful synergy effect both in the development of modeling software and in its application. The purpose of the present volume developed out of the 1994 publication by the American Association of Petroleum Geologists of a collection of individually authored papers entitled The Petroleum System - From Source to Trap, edited by L. B. Magoon and W. G. Dow.

Book An Evaluation of the Hydrocarbon Potential of the Onshore Northern Perth Basin  Western Australia

Download or read book An Evaluation of the Hydrocarbon Potential of the Onshore Northern Perth Basin Western Australia written by Angelo Crostella and published by Western Australia State Government. This book was released on 1995 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Petroleum Geochemistry of the Canning Basin  Western Australia

Download or read book Petroleum Geochemistry of the Canning Basin Western Australia written by K. A. R. Ghori and published by . This book was released on 2011 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This Record is a compilation of 169 new petroleum analyses for the Canning Basin, Western Australia, to supplement the 200 analyses reported by Ghori and Haines (2006). It comprises data analysed for the Geological Survey of Western Australia (GSWA) and new open-file data archived at GSWA. All data are available online through the Western Australia Petroleum and Geothermal Information Management System (WAPIMS)."--Introduction, p. 1.

Book A Structural Study of the Southern Perth Basin  Western Australia

Download or read book A Structural Study of the Southern Perth Basin Western Australia written by R.P. Lasky and published by . This book was released on 1993 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Basin Development and Petroleum Exploration Potential of the Gibson Area  Western Officer Basin  Western Australia

Download or read book Basin Development and Petroleum Exploration Potential of the Gibson Area Western Officer Basin Western Australia written by Henry Theodore Moors and published by . This book was released on 2002 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This report provides a new interpretation of the basin evolution, petroleum systems and play types of the Gibson area in the Officer Basin. This works follows on from and is based on, the detailed investigations carried out in the adjacent Yowalga area.