Download or read book Perturbation Methods in Science and Engineering written by Reza N. Jazar and published by Springer Nature. This book was released on 2021-07-12 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perturbation Methods in Science and Engineering provides the fundamental and advanced topics in perturbation methods in science and engineering, from an application viewpoint. This book bridges the gap between theory and applications, in new as well as classical problems. The engineers and graduate students who read this book will be able to apply their knowledge to a wide range of applications in different engineering disciplines. The book begins with a clear description on limits of mathematics in providing exact solutions and goes on to show how pioneers attempted to search for approximate solutions of unsolvable problems. Through examination of special applications and highlighting many different aspects of science, this text provides an excellent insight into perturbation methods without restricting itself to a particular method. This book is ideal for graduate students in engineering, mathematics, and physical sciences, as well as researchers in dynamic systems.
Download or read book Random Perturbation Methods with Applications in Science and Engineering written by Anatoli V. Skorokhod and published by Springer Science & Business Media. This book was released on 2007-06-21 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops methods for describing random dynamical systems, and it illustrats how the methods can be used in a variety of applications. Appeals to researchers and graduate students who require tools to investigate stochastic systems.
Download or read book Perturbation Methods with Applications in Science and Engineering written by İlkay Bakırtaş and published by BoD – Books on Demand. This book was released on 2018-10-17 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt: The governing equations of mathematical, chemical, biological, mechanical and economical models are often nonlinear and too complex to be solved analytically. Perturbation theory provides effective tools for obtaining approximate analytical solutions to a wide variety of such nonlinear problems, which may include differential or difference equations. In this book, we aim to present the recent developments and applications of the perturbation theory for treating problems in applied mathematics, physics and engineering. The eight chapters cover a variety of topics related to perturbation methods. The book is intended to draw attention of researchers and scientist in academia and industry.
Download or read book Methods and Applications of Singular Perturbations written by Ferdinand Verhulst and published by Springer Science & Business Media. This book was released on 2006-06-04 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains well-chosen examples and exercises A student-friendly introduction that follows a workbook type approach
Download or read book Singular Perturbation Theory written by R.S. Johnson and published by Springer Science & Business Media. This book was released on 2005-12-28 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: The importance of mathematics in the study of problems arising from the real world, and the increasing success with which it has been used to model situations ranging from the purely deterministic to the stochastic, is well established. The purpose of the set of volumes to which the present one belongs is to make available authoritative, up to date, and self-contained accounts of some of the most important and useful of these analytical approaches and techniques. Each volume provides a detailed introduction to a specific subject area of current importance that is summarized below, and then goes beyond this by reviewing recent contributions, and so serving as a valuable reference source. The progress in applicable mathematics has been brought about by the extension and development of many important analytical approaches and techniques, in areas both old and new, frequently aided by the use of computers without which the solution of realistic problems would otherwise have been impossible.
Download or read book Advanced Mathematical Methods for Scientists and Engineers I written by Carl M. Bender and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 605 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear, practical and self-contained presentation of the methods of asymptotics and perturbation theory for obtaining approximate analytical solutions to differential and difference equations. Aimed at teaching the most useful insights in approaching new problems, the text avoids special methods and tricks that only work for particular problems. Intended for graduates and advanced undergraduates, it assumes only a limited familiarity with differential equations and complex variables. The presentation begins with a review of differential and difference equations, then develops local asymptotic methods for such equations, and explains perturbation and summation theory before concluding with an exposition of global asymptotic methods. Emphasizing applications, the discussion stresses care rather than rigor and relies on many well-chosen examples to teach readers how an applied mathematician tackles problems. There are 190 computer-generated plots and tables comparing approximate and exact solutions, over 600 problems of varying levels of difficulty, and an appendix summarizing the properties of special functions.
Download or read book A First Look at Perturbation Theory written by James G. Simmonds and published by Courier Corporation. This book was released on 2013-07-04 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Undergraduates in engineering and the physical sciences receive a thorough introduction to perturbation theory in this useful and accessible text. Students discover methods for obtaining an approximate solution of a mathematical problem by exploiting the presence of a small, dimensionless parameter — the smaller the parameter, the more accurate the approximate solution. Knowledge of perturbation theory offers a twofold benefit: approximate solutions often reveal the exact solution's essential dependence on specified parameters; also, some problems resistant to numerical solutions may yield to perturbation methods. In fact, numerical and perturbation methods can be combined in a complementary way. The text opens with a well-defined treatment of finding the roots of polynomials whose coefficients contain a small parameter. Proceeding to differential equations, the authors explain many techniques for handling perturbations that reorder the equations or involve an unbounded independent variable. Two disparate practical problems that can be solved efficiently with perturbation methods conclude the volume. Written in an informal style that moves from specific examples to general principles, this elementary text emphasizes the "why" along with the "how"; prerequisites include a knowledge of one-variable calculus and ordinary differential equations. This newly revised second edition features an additional appendix concerning the approximate evaluation of integrals.
Download or read book Perturbation Methods for Engineers and Scientists written by Alan W. Bush and published by CRC Press. This book was released on 1992-02-03 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perturbation Methods for Engineers and Scientists examines the main techniques of perturbation expansions applied to both differential equations and integral expressions. It describes several fluid dynamics applications, including aerofoils, boundary layers in momentum heat, and mass transfer. In addition, it applies the multiple scale technique to the description of surface roughness effects in lubrication. The book's intuitive, rather than formal, approach enables these advanced techniques to be used by scientists and engineers as well as by students.
Download or read book Multiple Scale and Singular Perturbation Methods written by J.K. Kevorkian and published by Springer. This book was released on 1996-05-15 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a revised and updated version, including a substantial portion of new material, of our text Perturbation Methods in Applied Mathematics (Springer Verlag, 1981). We present the material at a level that assumes some familiarity with the basics of ordinary and partial differential equations. Some of the more advanced ideas are reviewed as needed; therefore this book can serve as a text in either an advanced undergraduate course or a graduate-level course on the subject. Perturbation methods, first used by astronomers to predict the effects of small disturbances on the nominal motions of celestial bodies, have now become widely used analytical tools in virtually all branches of science. A problem lends itself to perturbation analysis if it is "close" to a simpler problem that can be solved exactly. Typically, this closeness is measured by the occurrence of a small dimensionless parameter, E, in the governing system (consisting of differential equations and boundary conditions) so that for E = 0 the resulting system is exactly solvable. The main mathematical tool used is asymptotic expansion with respect to a suitable asymptotic sequence of functions of E. In a regular perturbation problem, a straightforward procedure leads to a system of differential equations and boundary conditions for each term in the asymptotic expansion. This system can be solved recursively, and the accuracy of the result improves as E gets smaller, for all values of the independent variables throughout the domain of interest. We discuss regular perturbation problems in the first chapter.
Download or read book Perturbation Methods written by Ali H. Nayfeh and published by John Wiley & Sons. This book was released on 2008-09-26 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research
Download or read book Singular Perturbation Methods in Control written by Petar Kokotovic and published by SIAM. This book was released on 1999-01-01 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Singular perturbations and time-scale techniques were introduced to control engineering in the late 1960s and have since become common tools for the modeling, analysis, and design of control systems. In this SIAM Classics edition of the 1986 book, the original text is reprinted in its entirety (along with a new preface), providing once again the theoretical foundation for representative control applications. This book continues to be essential in many ways. It lays down the foundation of singular perturbation theory for linear and nonlinear systems, it presents the methodology in a pedagogical way that is not available anywhere else, and it illustrates the theory with many solved examples, including various physical examples and applications. So while new developments may go beyond the topics covered in this book, they are still based on the methodology described here, which continues to be their common starting point.
Download or read book Nonlinear Singular Perturbation Phenomena written by K. W. Chang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our purpose in writing this monograph is twofold. On the one hand, we want to collect in one place many of the recent results on the exist ence and asymptotic behavior of solutions of certain classes of singularly perturbed nonlinear boundary value problems. On the other, we hope to raise along the way a number of questions for further study, mostly ques tions we ourselves are unable to answer. The presentation involves a study of both scalar and vector boundary value problems for ordinary dif ferential equations, by means of the consistent use of differential in equality techniques. Our results for scalar boundary value problems obeying some type of maximum principle are fairly complete; however, we have been unable to treat, under any circumstances, problems involving "resonant" behavior. The linear theory for such problems is incredibly complicated already, and at the present time there appears to be little hope for any kind of general nonlinear theory. Our results for vector boundary value problems, even those admitting higher dimensional maximum principles in the form of invariant regions, are also far from complete. We offer them with some trepidation, in the hope that they may stimulate further work in this challenging and important area of differential equa tions. The research summarized here has been made possible by the support over the years of the National Science Foundation and the National Science and Engineering Research Council.
Download or read book Perturbations written by James A. Murdock and published by SIAM. This book was released on 1999-01-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perturbations: Theory and Methods gives a thorough introduction to both regular and singular perturbation methods for algebraic and differential equations. Unlike most introductory books on the subject, this one distinguishes between formal and rigorous asymptotic validity, which are commonly confused in books that treat perturbation theory as a bag of heuristic tricks with no foundation. The meaning of "uniformity" is carefully explained in a variety of contexts. All standard methods, such as rescaling, multiple scales, averaging, matching, and the WKB method are covered, and the asymptotic validity (in the rigorous sense) of each method is carefully proved. First published in 1991, this book is still useful today because it is an introduction. It combines perturbation results with those known through other methods. Sometimes a geometrical result (such as the existence of a periodic solution) is rigorously deduced from a perturbation result, and at other times a knowledge of the geometry of the solutions is used to aid in the selection of an effective perturbation method. Dr. Murdock's approach differs from other introductory texts because he attempts to present perturbation theory as a natural part of a larger whole, the mathematical theory of differential equations. He explores the meaning of the results and their connections to other ways of studying the same problems.
Download or read book Homotopy Analysis Method in Nonlinear Differential Equations written by Shijun Liao and published by Springer Science & Business Media. This book was released on 2012-06-22 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Homotopy Analysis Method in Nonlinear Differential Equations" presents the latest developments and applications of the analytic approximation method for highly nonlinear problems, namely the homotopy analysis method (HAM). Unlike perturbation methods, the HAM has nothing to do with small/large physical parameters. In addition, it provides great freedom to choose the equation-type of linear sub-problems and the base functions of a solution. Above all, it provides a convenient way to guarantee the convergence of a solution. This book consists of three parts. Part I provides its basic ideas and theoretical development. Part II presents the HAM-based Mathematica package BVPh 1.0 for nonlinear boundary-value problems and its applications. Part III shows the validity of the HAM for nonlinear PDEs, such as the American put option and resonance criterion of nonlinear travelling waves. New solutions to a number of nonlinear problems are presented, illustrating the originality of the HAM. Mathematica codes are freely available online to make it easy for readers to understand and use the HAM. This book is suitable for researchers and postgraduates in applied mathematics, physics, nonlinear mechanics, finance and engineering. Dr. Shijun Liao, a distinguished professor of Shanghai Jiao Tong University, is a pioneer of the HAM.
Download or read book Perturbation Methods for Differential Equations written by Bhimsen Shivamoggi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Perturbation methods are widely used in the study of physically significant differential equations, which arise in Applied Mathematics, Physics and Engineering.; Background material is provided in each chapter along with illustrative examples, problems, and solutions.; A comprehensive bibliography and index complete the work.; Covers an important field of solutions for engineering and the physical sciences.; To allow an interdisciplinary readership, the book focuses almost exclusively on the procedures and the underlying ideas and soft pedal the proofs; Dr. Bhimsen K. Shivamoggi has authored seven successful books for various publishers like John Wiley & Sons and Kluwer Academic Publishers.
Download or read book Perturbation Methods written by E. J. Hinch and published by Cambridge University Press. This book was released on 1991-10-25 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook presenting the theory and underlying techniques of perturbation methods in a manner suitable for senior undergraduates from a broad range of disciplines.
Download or read book Fitted Numerical Methods For Singular Perturbation Problems Error Estimates In The Maximum Norm For Linear Problems In One And Two Dimensions Revised Edition written by John J H Miller and published by World Scientific. This book was released on 2012-02-29 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first edition of this book, the literature on fitted mesh methods for singularly perturbed problems has expanded significantly. Over the intervening years, fitted meshes have been shown to be effective for an extensive set of singularly perturbed partial differential equations. In the revised version of this book, the reader will find an introduction to the basic theory associated with fitted numerical methods for singularly perturbed differential equations. Fitted mesh methods focus on the appropriate distribution of the mesh points for singularly perturbed problems. The global errors in the numerical approximations are measured in the pointwise maximum norm. The fitted mesh algorithm is particularly simple to implement in practice, but the theory of why these numerical methods work is far from simple. This book can be used as an introductory text to the theory underpinning fitted mesh methods.