EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Pedestal Characteristics and MHD Stability of H mode Plasmas in TCV

Download or read book Pedestal Characteristics and MHD Stability of H mode Plasmas in TCV written by Andreas Pitzschke and published by . This book was released on 2011 with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book H mode Pedestal Characteristics and MHD Stability of the Edge Plasma in Alcator C Mod

Download or read book H mode Pedestal Characteristics and MHD Stability of the Edge Plasma in Alcator C Mod written by Dmitri A. Mossessian and published by . This book was released on 2002 with total page 32 pages. Available in PDF, EPUB and Kindle. Book excerpt: Under most operational conditions of Alcator C-Mod the dominant type of H-mode is the steady state enhanced Da mode (EDA), characterized by good energy confinement, continuously degraded impurity confinement and absence of regular ELMs. In this regime a quasicoherent (QC) electromagnetic mode ... is observed, localized in the region of the density pedestal. Experimental evidence suggests that the mode is responsible for enhancement of particle transport. It is shown experimentally that the QC mode can exist in a well defined region in edge temperature-safety factor space, favoring high edge q values ... and requiring moderate pedestal temperatureTeped ... As edge temperature and pressure gradient increase, the quasicoherent mode is replaced by broadband low frequency fluctuations (f

Book Pedestal Structure and Stability in High performance Plasmas on Alcator C Mod

Download or read book Pedestal Structure and Stability in High performance Plasmas on Alcator C Mod written by John Reel Walk (Jr.) and published by . This book was released on 2014 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: High-performance operation in tokamaks is characterized by the formation of a pedestal, a region of suppressed transport and steep gradients in density, temperature, and pressure near the plasma edge. The pedestal height is strongly correlated with overall fusion performance, as a substantial pedestal supports the elevated core pressure necessary for the desired fusion reaction rate and power density. However, stationary operation requires some relaxation of the particle transport barrier, to avoid the accumulation of impurities (e. g., helium "fusion ash," plasmafacing surface materials) in the plasma. Moreover, the formation of the pedestal introduces an additional constraint: the steep gradients act as a source of free energy for Edge-Localized Mode (ELM) instabilities, which on ITER- or reactor-scale devices can drive large, explosive bursts of particle and energy transport leading to unacceptable levels of heat loading and erosion damage to plasma-facing materials. As such, the suppression, mitigation, or avoidance of large ELMs is the subject of much current research. In light of this, a firm physical understanding of the pedestal structure and stability against the ELM trigger is essential for the extrapolation of high-performance regimes to large-scale operation, particularly in operating scenarios lacking large, deleterious ELMs. This thesis focuses on the I-mode, a novel high-performance regime pioneered on the Alcator C-Mod tokamak. I-mode is unique among high-performance regimes in that it appears to decouple energy and particle transport, reaching H-mode levels of energy confinement with the accompanying temperature pedestal while maintaining a L-mode-like density profile and particle transport. I-mode exhibits three attractive properties for a reactor regime: (1) I-mode appears to be inherently free of large ELMs, avoiding the need for externally-applied ELM control. (2) The lack of a particle transport barrier maintains the desired level of impurity flushing from the plasma, avoiding excessive radiative losses. (3) Energy confinement in I-mode presents minimal degradation with input heating power, contrary to that found in H-mode. This thesis presents the results from a combined empirical and computational study of the pedestal on C-Mod. Analysis methods are first implemented in ELMy H-mode base cases on CMod -- in particular, the EPED model based on the combined constraints from peeling-ballooning MHD instability and kinetic-ballooning turbulence is tested on C-Mod. Empirical results in ELMy H-mode are consistent with the physics assumptions used in EPED, with the pedestal pressure gradient constrained by [delta]p ~ I2/p expected from the ballooning stability limit. To lowestorder approximation, ELMy H-mode pedestals are limited in [beta]p,ped, with the attainable beta set by shaping -- within this limit, an inverse relationship between pedestal density and temperature is seen. The pedestal width is found to be described by the scaling [delta][psi] = G[beta] 1/2 / p.ped expected from the KBM limit, where G([nu],[epsilon], ...) is a weakly varying function with hGi = 0.0857. No systematic secondary scalings with field, gyroradius, shaping, or collisionality are observed. The EPED model, based on these assumptions, correctly predicts the pressure pedestal width and height to within a systematic ~20% uncertainty. Empirical scalings in I-mode highlight the operational differences from conventional H-modes. The temperature and pressure pedestal exhibit a positive trend with current, similar to H-mode (although I-mode pedestal temperature typically exceeds that found in comparable H-modes) -- however, the temperature and pressure respond significantly more strongly to heating power, with Te ... The I-mode density profile is set largely independently of the temperature pedestal (unlike ELMy H-mode), controlled by operator fueling. Given sufficient heating power to maintain a consistent ..., temperature pedestals are matched across a range of fueling levels. This indicates a path to readier access and increased performance in Imode, with the mode accessed at moderate density and power, after which the pedestal pressure is elevated with matched increases in fueling and heating power. Global performance metrics in I-mode are competitive with H-mode results on C-Mod, and are consistent with the weak degradation of energy confinement with heating power. I-mode pedestals are also examined against the physics basis for the EPED model. Peelingballooning MHD stability is calculated using the ELITE code, finding the I-mode pedestal to be strongly stable to the MHD modes associated with the ELM trigger. Similarly, modeling of the KBM using the infinite-n ballooning mode calculated in BALOO as a surrogate for the threshold indicates that the I-mode pedestal is stable to kinetic-ballooning turbulence, consistent with the observed lack of a trend in the pedestal width with [beta]p,ped. This is found to be the case even in I-modes exhibiting small, transient ELM-like events. The majority of these events are triggered by the sawtooth heat pulse reaching the edge, and do not negatively perturb the temperature pedestal -- it is proposed, then, that these events are not true peeling-ballooning-driven ELMs, but rather are an ionization front in the SOL driven by the sawtooth heat pulse. There are transient ELM events showing the characteristic temperature pedestal crash indicating a true ELM -- the steady I-mode pedestals around these isolated events are also modeled to be P-B and KBM stable, although more detailed modeling of these events is ongoing.

Book The Effect of Plasma Shape on H Mode Pedestal Characteristics on DIII D

Download or read book The Effect of Plasma Shape on H Mode Pedestal Characteristics on DIII D written by and published by . This book was released on 1999 with total page 21 pages. Available in PDF, EPUB and Kindle. Book excerpt: The characteristics of the H-mode are studied in discharges with varying triangularity and squareness. The pressure at the top of the H-mode pedestal increases strongly with triangularity primarily due to an increase in the margin by which the edge pressure gradient exceeds the ideal ballooning mode first stability limit. Two models are considered for how the edge may exceed the ballooning mode limit. In one model [1], access to the ballooning mode second stable regime allows the edge pressure gradient and associated bootstrap current to continue to increase until an edge localized, low toroidal mode number, ideal kink mode is destabilized. In the second model [2], the finite width of the H-mode transport barrier, and diamagnetic effects raise the pressure gradient limit above the ballooning mode limit. We observe a weak inverse dependence of the width of the H-mode transport barrier, [Delta], on triangularity relative to the previously obtained [3] scaling [Delta] ∞ ([beta]{sub P}{sup PED})12. The energy loss for Type I ELMs increases with triangularity in proportion to the pedestal energy increase. The temperature profile is found to respond stiffly to changes in T{sup PED} at low temperature, while at high temperature the response is additive. The response of the density profile is also found to play a role in the response of the total stored energy to changes in the W{sup PED}.

Book Magnetohydrodynamic Stability at the Edge Region in H mode Plasmas with Long Edge localized mode free Phases in the Large Helical Device

Download or read book Magnetohydrodynamic Stability at the Edge Region in H mode Plasmas with Long Edge localized mode free Phases in the Large Helical Device written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Theory of Fusion Plasmas

    Book Details:
  • Author : Olivier Sauter
  • Publisher : American Institute of Physics
  • Release : 2008-12-02
  • ISBN : 9780735406001
  • Pages : 400 pages

Download or read book Theory of Fusion Plasmas written by Olivier Sauter and published by American Institute of Physics. This book was released on 2008-12-02 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Joint Varenna-Lausanne International Workshop on Theory of Fusion Plasmas takes place every other year in a place particularly favorable for informal and in depth discussions. Invited and contributed papers present state-of-the art researches in theoretical plasma physics, covering all domains relevant to fusion plasmas. This workshop always allows a fruitful mix of experienced researchers and students, to allow for a better understanding of the key theoretical physics models and applications, such as: Theoretical issues related to burning plasmas; Anomalous Transport (Turbulence, Coherent Structures, Microinstabilities) RF Heating and Current Drive; Macroinstabilities; Plasma-Edge Physics and Divertors; Fast particles instabilities.

Book H mode Pedestal and L H Transition Studies on Alcator C Mod

Download or read book H mode Pedestal and L H Transition Studies on Alcator C Mod written by Jerry Wayne Hughes and published by . This book was released on 2005 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: H-mode research on Alcator C-Mod is described, with a focus on the edge transport barrier (ETB). ETB pedestals are characterized using several diagnostics, leading to a thorough description of profile structure in H-mode. L-H transition criteria are discussed, along with the fast evolution of the pedestal following the L-H transition. H-mode regimes are described in terms of their edge transport characteristics and the local edge parameters favoring each. Empirical scalings of the pedestal with operational parameters are found, helping to illuminate physics governing the pedestal structure, and the relationship between edge transport and global confinement is discussed. Dimensionless comparisons between discharges on different tokamaks are discussed. Finally, ongoing work and directions for the future are described.

Book Edge Currents and Stability in DIII D

Download or read book Edge Currents and Stability in DIII D written by H. W. Mueller and published by . This book was released on 2004 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schl{umlt u}ter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of an edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scalelengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to MSE measurements of B{sub pol}.

Book Ideal Magnetohydrodynamics

Download or read book Ideal Magnetohydrodynamics written by Jeffrey P. Freidberg and published by Springer. This book was released on 2013-11-20 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Collisional Transport in Magnetized Plasmas

Download or read book Collisional Transport in Magnetized Plasmas written by Per Helander and published by Cambridge University Press. This book was released on 2005-10-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate level text treating transport theory, an essential element of theoretical plasma physics.

Book Plasma Surface Interactions in Controlled Fusion Devices

Download or read book Plasma Surface Interactions in Controlled Fusion Devices written by and published by . This book was released on 1978 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fusion Nucl  aire

Download or read book Fusion Nucl aire written by and published by . This book was released on 2006-05 with total page 944 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Frontiers in Fusion Research II

Download or read book Frontiers in Fusion Research II written by Mitsuru Kikuchi and published by Springer. This book was released on 2015-09-03 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews recent progress in our understanding of tokamak physics related to steady state operation, and addresses the scientific feasibility of a steady state tokamak fusion power system. It covers the physical principles behind continuous tokamak operation and details the challenges remaining and new lines of research towards the realization of such a system. Following a short introduction to tokamak physics and the fundamentals of steady state operation, later chapters cover parallel and perpendicular transport in tokamaks, MHD instabilities in advanced tokamak regimes, control issues, and SOL and divertor plasmas. A final chapter reviews key enabling technologies for steady state reactors, including negative ion source and NBI systems, Gyrotron and ECRF systems, superconductor and magnet systems, and structural materials for reactors. The tokamak has demonstrated an excellent plasma confinement capability with its symmetry, but has an intrinsic drawback with its pulsed operation with inductive operation. Efforts have been made over the last 20 years to realize steady state operation, most promisingly utilizing bootstrap current. Frontiers in Fusion Research II: Introduction to Modern Tokamak Physics will be of interest to graduate students and researchers involved in all aspects of tokamak science and technology.

Book Magnetic Fusion Technology

Download or read book Magnetic Fusion Technology written by Thomas J. Dolan and published by Springer Science & Business Media. This book was released on 2014-02-10 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: • magnet systems, • plasma heating systems, • control systems, • energy conversion systems, • advanced materials development, • vacuum systems, • cryogenic systems, • plasma diagnostics, • safety systems, and • power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.