Download or read book PDEs Submanifolds and Affine Differential Geometry written by Barbara Opozda and published by . This book was released on 2005 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book PDEs Submanifolds and Affine Differential Geometry written by Martin Wiehe and published by . This book was released on 2002 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Global Affine Differential Geometry of Hypersurfaces written by An-Min Li and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-08-17 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book draws a colorful and widespread picture of global affine hypersurface theory up to the most recent state. Moreover, the recent development revealed that affine differential geometry – as differential geometry in general – has an exciting intersection area with other fields of interest, like partial differential equations, global analysis, convex geometry and Riemann surfaces. The second edition of this monograph leads the reader from introductory concepts to recent research. Since the publication of the first edition in 1993 there appeared important new contributions, like the solutions of two different affine Bernstein conjectures, due to Chern and Calabi, respectively. Moreover, a large subclass of hyperbolic affine spheres were classified in recent years, namely the locally strongly convex Blaschke hypersurfaces that have parallel cubic form with respect to the Levi-Civita connection of the Blaschke metric. The authors of this book present such results and new methods of proof.
Download or read book Geometry And Topology Of Submanifolds X Differential Geometry In Honor Of Professor S S Chern written by Weihuan Chen and published by World Scientific. This book was released on 2000-11-07 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents:Progress in Affine Differential Geometry — Problem List and Continued Bibliography (T Binder & U Simon)On the Classification of Timelike Bonnet Surfaces (W H Chen & H Z Li)Affine Hyperspheres with Constant Affine Sectional Curvature (F Dillen et al.)Geometric Properties of the Curvature Operator (P Gilkey)On a Question of S S Chern Concerning Minimal Hypersurfaces of Spheres (I Hiric( & L Verstraelen)Parallel Pure Spinors on Pseudo-Riemannian Manifolds (I Kath)Twistorial Construction of Spacelike Surfaces in Lorentzian 4-Manifolds (F Leitner)Nirenberg's Problem in 90's (L Ma)A New Proof of the Homogeneity of Isoparametric Hypersurfaces with (g,m) = (6, 1) (R Miyaoka)Harmonic Maps and Negatively Curved Homogeneous Spaces (S Nishikawa)Biharmonic Morphisms Between Riemannian Manifolds (Y L Ou)Intrinsic Properties of Real Hypersurfaces in Complex Space Forms (P J Ryan)On the Nonexistence of Stable Minimal Submanifolds in Positively Pinched Riemannian Manifolds (Y B Shen & H Q Xu)Geodesic Mappings of the Ellipsoid (K Voss)η-Invariants and the Poincaré-Hopf Index Formula (W Zhang)and other papers Readership: Researchers in differential geometry and topology. Keywords:Conference;Proceedings;Berlin (Germany);Beijing (China);Geometry;Topology;Submanifolds X;Differential Geometry;Dedication
Download or read book Introduction to Differential Geometry written by Joel W. Robbin and published by Springer Nature. This book was released on 2022-01-12 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.
Download or read book Symposium on the Differential Geometry of Submanifolds written by Luc Vrancken and published by Lulu.com. This book was released on 2008-06-30 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of the «Symposium on differential geometry» which took place at the Université de Valenciennes et du Hainaut Cambrésis from July 3, 2007 until July 7, 2007.The main theme of the conference was the differential geometry of submanifolds. Special emphasis was put on the following topics:Lagrangian immersions, Minimal immersions and constant mean curvature immersions, Harmonic maps and harmonic morphisms, Variational problems, Affine differential geometry. This conference follows the tradition of the conferences in the series of « Geometry and Topology of Submanifolds », which started with the Luminy meeting in 1987 and then continued with various meetings at different places in Europe, such as amongst others Avignon, Leeds, Leuven, Brussels, Nordfjordeid, Berlin, Warszawa, Bedlewo and also in China (Beijing, 1998).
Download or read book Geometry And Topology Of Submanifolds Vii Differential Geometry In Honour Of Prof Katsumi Nomizu written by Franki Dillen and published by World Scientific. This book was released on 1995-05-09 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume on pure and applied differential geometry, includes topics on submanifold theory, affine differential geometry and applications of geometry in engineering sciences. The conference was dedicated to the 70th birthday of Prof Katsumi Nomizu. Papers on the scientific work and life of Katsumi Nomizu are also included.
Download or read book Cartan for Beginners written by Thomas Andrew Ivey and published by American Mathematical Soc.. This book was released on 2003 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to Cartan's approach to differential geometry. Two central methods in Cartan's geometry are the theory of exterior differential systems and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems. It begins with the classical geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics.One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. The book features an introduction to $G$-structures and a treatment of the theory of connections. The Cartan machinery is also applied to obtain explicit solutions of PDEs via Darboux's method, the method of characteristics, and Cartan's method of equivalence. This text is suitable for a one-year graduate course in differential geometry, and parts of it can be used for a one-semester course. It has numerous exercises and examples throughout. It will also be useful to experts in areas such as PDEs and algebraic geometry who want to learn how moving frames and exterior differential systems apply to their fields.
Download or read book An Introduction to Differential Geometry written by T. J. Willmore and published by Courier Corporation. This book was released on 2013-05-13 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
Download or read book Geometry And Topology Of Submanifolds Ix written by Leopold Verstraelen and published by World Scientific. This book was released on 1999-07-22 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents:Affine Bibliography 1998 (T Binder et al.)Contact Metric R-Harmonic Manifolds (K Arslan & C Murathan)Local Classification of Centroaffine Tchebychev Surfaces with Constant Curvature Metric (T Binder)Hypersurfaces in Space Forms with Some Constant Curvature Functions (F Brito et al.)Some Relations Between a Submanifold and Its Focal Set (S Carter & A West)On Manifolds of Pseudosymmetric Type (F Defever et al.)Hypersurfaces with Pseudosymmetric Weyl Tensor in Conformally Flat Manifolds (R Deszcz et al.)Least-Squares Geometrical Fitting and Minimising Functions on Submanifolds (F Dillen et al.)Cubic Forms Generated by Functions on Projectively Flat Spaces (J Leder)Distinguished Submanifolds of a Sasakian Manifold (I Mihai)On the Curvature of Left Invariant Locally Conformally Para-Kählerian Metrics (Z Olszak)Remarks on Affine Variations on the Ellipsoid (M Wiehe)Dirac's Equation, Schrödinger's Equation and the Geometry of Surfaces (T J Willmore)and other papers Readership: Researchers doing differential geometry and topology. Keywords:Proceedings;Geometry;Topology;Valenciennes (France);Lyon (France);Leuven (Belgium);Dedication
Download or read book Geometry and Topology of Submanifolds X written by Weihuan Chen and published by World Scientific. This book was released on 2000 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: http://www.worldscientific.com/worldscibooks/10.1142/4569
Download or read book Geometry And Topology Of Submanifolds Viii written by Ignace Van De Woestyne and published by World Scientific. This book was released on 1996-10-25 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings consists of papers presented at the international meeting of Differential Geometry and Computer Vision held in Norway and of international meetings on Pure and Applied Differential Geometry held in Belgium. This volume is dedicated to Prof Dr Tom Willmore for his contribution to the development of the domain of differential geometry. Furthermore, it contains a survey on recent developments on affine differential geometry, including a list of publications and a problem list.
Download or read book Differential Geometry written by Jesús A. Alvarez López and published by World Scientific. This book was released on 2009 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: A brief portrait of the life and work of Professor Enrique Vidal Abascal / L.A. Cordero -- pt. A. Foliation theory. Characteristic classes for Riemannian foliations / S. Hurder. Non unique-ergodicity of harmonic measures: Smoothing Samuel Petite's examples / B, Deroin. On the uniform simplicity of diffeomorphism groups / T. Tsuboi. On Bennequin's isotopy lemma and Thurston's inequality / Y. Mitsumatsu. On the Julia sets of complex codimension-one transversally holomorphic foliations / T. Asuke. Singular Riemannian foliations on spaces without conjugate points / A. Lytchak. Variational formulae for the total mean curvatures of a codimension-one distribution / V. Rovenski and P. Walczak. On a Weitzenböck-like formula for Riemannian foliations / V. Slesar. Duality and minimality for Riemannian foliations on open manifolds / X.M. Masa. Open problems on foliations -- pt. B. Riemannian geometry. Graphs with prescribed mean curvature / M. Dajczer. Genuine isometric and conformal deformations of submanifolds / R. Tojeiro. Totally geodesic submanifolds in Riemannian symmetric spaces / S. Klein. The orbits of cohomogeneity one actions on complex hyperbolic spaces / J.C. Díaz-Ramos. Rigidity results for geodesic spheres in space forms / J. Roth. Mean curvature flow and Bernstein-Calabi results for spacelike graphs / G. Li and I.M.C. Salavessa. Riemannian geometric realizations for Ricci tensors of generalized algebraic curvature operators / P. Gilkey, S. Nikc̮ević and D. Westerman. Conformally Osserman multiply warped product structures in the Riemannian setting / M. Brozos-Vázquez, M.E. Vázquez-Abal and R. Vázquez-Lorenzo. Riemannian [symbol]-symmetric spaces / M. Goze and E. Remm. Methods for solving the Jacobi equation. Constant osculating rank vs. constant Jacobi osculating rank / T. Arias-Marco. On the reparametrization of affine homogeneous geodesics / Z. Dus̮ek. Conjugate connections and differential equations on infinite dimensional manifolds / M. Aghasi [und weitere]. Totally biharmonic submanifolds / D. Impera and S. Montaldo. The biharmonicity of unit vector fields on the Poincaré half-space H[symbol] / M.K. Markellos. Perspectives on biharmonic maps and submanifolds / A. Balmus. Contact pair structures and associated metrics / G. Bande and A. Hadjar. Paraquaternionic manifolds and mixed 3-structures / S. Ianus and G.E. Vi̮lcu. On topological obstruction of compact positively Ricci curved manifolds / W.-H. Chen. Gray curvature conditions and the Tanaka-Webster connection / R. Mocanu. Riemannian structures on higher order frame bundles from classical linear connections / J. Kurek and W.M. Mikulski. Distributions on the cotangent bundle from torsion-free connections / J. Kurek and W.M. Mikulski. On the geodesics of the rotational surfaces in the Bianchi-Cartan-Vranceanu spaces / P. Piu and M.M. Profir. Cotangent bundles with general natural Kähler structures of quasi-constant holomorphic sectional curvatures / S.L. Druta̮. Polynomial translation Weingarten surfaces in 3-dimensional Euclidean space / M.I. Munteanu and A.I. Nistor. G-structures defined on pseudo-Riemannian manifolds / I. Sánchez-Rodríguez -- List of participants
Download or read book Pseudo Riemannian Geometry delta invariants and Applications written by Bang-yen Chen and published by World Scientific. This book was released on 2011 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of this book provides a self-contained and accessible introduction to the subject in the general setting of pseudo-Riemannian manifolds and their non-degenerate submanifolds, only assuming from the reader some basic knowledge about manifold theory. A number of recent results on pseudo-Riemannian submanifolds are also included.The second part of this book is on ë-invariants, which was introduced in the early 1990s by the author. The famous Nash embedding theorem published in 1956 was aimed for, in the hope that if Riemannian manifolds could be regarded as Riemannian submanifolds, this would then yield the opportunity to use extrinsic help. However, this hope had not been materialized as pointed out by M Gromov in his 1985 article published in Asterisque. The main reason for this is the lack of control of the extrinsic invariants of the submanifolds by known intrinsic invariants. In order to overcome such difficulties, as well as to provide answers for an open question on minimal immersions, the author introduced in the early 1990s new types of Riemannian invariants, known as ë-invariants, which are very different in nature from the classical Ricci and scalar curvatures. At the same time he was able to establish general optimal relations between ë-invariants and the main extrinsic invariants. Since then many new results concerning these ë-invariants have been obtained by many geometers. The second part of this book is to provide an extensive and comprehensive survey over this very active field of research done during the last two decades.
Download or read book Differential Geometry Partial Differential Equations on Manifolds written by Robert Everist Greene and published by American Mathematical Soc.. This book was released on 1993 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of three parts comprising Volume 54, the proceedings of the Summer Research Institute on Differential Geometry, held at the University of California, Los Angeles, July 1990 (ISBN for the set is 0-8218-1493-1). Part 1 begins with a problem list by S.T. Yau, successor to his 1980 list ( Sem
Download or read book Proceedings of the Workshop Contemporary Geometry and Related Topics written by Neda Bokan and published by World Scientific. This book was released on 2004 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Readership: Researchers in geometry & topology, nonlinear science and dynamical systems.
Download or read book Seminar On Minimal Submanifolds AM 103 Volume 103 written by Enrico Bombieri and published by Princeton University Press. This book was released on 2016-03-02 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: The description for this book, Seminar On Minimal Submanifolds. (AM-103), Volume 103, will be forthcoming.