Download or read book Chemical Waves and Patterns written by Raymond Kapral and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of macroscopic waves and patterns developing from chemical reaction coupling with diffusion was presented, apparently for the first time, at the Main Meeting of the Deutsche Bunsengesellschaft fur Angewandte Physikalische Chemie, held in Dresden, Germany from May 21 to 24, 1906. Robert Luther, Director of the Physical Chemistry Laboratory in Leipzig, read his paper on the discovery and analysis of propagating reaction-diffusion fronts in autocatalytic chemical reactions [1, 2]. He presented an equation for the velocity of these new waves, V = a(KDC)1/2, and asserted that they might have features in common with propagating action potentials in nerve cell axons. During the discussion period, a skeptic in the audience voiced his objections to this notion. It was none other than the great physical chemist Walther Nernst, who believed that nerve impulse propagation was far too rapid to be akin to the propagating fronts. He was also not willing to accept Luther's wave velocity equation without a derivation. Luther stood his ground, saying his equation was "a simple consequence of the corresponding differential equation. " He described several different autocatalytic reactions that exhibit propagating fronts (recommending gelling the solution to prevent convection) and even presented a demonstration: the autocatalytic permanganate oxidation of oxalate was carried out in a test tube with the image of the front projected onto a screen for the audience.
Download or read book Nonlinear Reaction Diffusion Systems written by Roman Cherniha and published by Springer. This book was released on 2017-09-18 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents several fundamental results in solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which are relevant for biological applications, from the symmetry point of view, providing rigorous definitions and constructive algorithms to search for conditional symmetry (a nontrivial generalization of the well-known Lie symmetry) of nonlinear reaction-diffusion systems. In order to present applications to population dynamics, it focuses mainly on two- and three-component diffusive Lotka-Volterra systems. While it is primarily a valuable guide for researchers working with reaction-diffusion systems and those developing the theoretical aspects of conditional symmetry conception, parts of the book can also be used in master’s level mathematical biology courses.
Download or read book 2019 20 MATRIX Annals written by Jan de Gier and published by Springer Nature. This book was released on 2021-02-10 with total page 798 pages. Available in PDF, EPUB and Kindle. Book excerpt: MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the ten programs held at MATRIX in 2019 and the two programs held in January 2020: · Topology of Manifolds: Interactions Between High and Low Dimensions · Australian-German Workshop on Differential Geometry in the Large · Aperiodic Order meets Number Theory · Ergodic Theory, Diophantine Approximation and Related Topics · Influencing Public Health Policy with Data-informed Mathematical Models of Infectious Diseases · International Workshop on Spatial Statistics · Mathematics of Physiological Rhythms · Conservation Laws, Interfaces and Mixing · Structural Graph Theory Downunder · Tropical Geometry and Mirror Symmetry · Early Career Researchers Workshop on Geometric Analysis and PDEs · Harmonic Analysis and Dispersive PDEs: Problems and Progress The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.
Download or read book Mathematical Biology II written by James D. Murray and published by Springer Science & Business Media. This book was released on 2011-02-15 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS
Download or read book Dissipative Solitons in Reaction Diffusion Systems written by Andreas Liehr and published by Springer Science & Business Media. This book was released on 2013-03-27 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Why writing a book about a specialized task of the large topic of complex systems? And who will read it? The answer is simple: The fascination for a didactically valuable point of view, the elegance of a closed concept and the lack of a comprehensive disquisition. The fascinating part is that field equations can have localized solutions exhibiting the typical characteristics of particles. Regarding the field equations this book focuses on, the field phenomenon of localized solutions can be described in the context of a particle formalism, which leads to a set of ordinary differential equations covering the time evolution of the position and the velocity of each particle. Moreover, starting from these particle dynamics and making the transition to many body systems, one considers typical phenomena of many body systems as shock waves and phase transitions, which themselves can be described as field phenomena. Such transitions between different level of modelling are well known from conservative systems, where localized solutions of quantum field theory lead to the mechanisms of elementary particle interaction and from this to field equations describing the properties of matter. However, in dissipative systems such transitions have not been considered yet, which is adjusted by the presented book. The elegance of a closed concept starts with the observation of self-organized current filaments in a semiconductor gas discharge system. These filaments move on random paths and exhibit certain particle features like scattering or the formation of bound states. Neither the reasons for the propagation of the filaments nor the laws of the interaction between the filaments can be registered by direct observations. Therefore a model is established, which is phenomenological in the first instance due to the complexity of the experimental system. This model allows to understand the existence of localized structures, their mechanisms of movement, and their interaction, at least, on a qualitative level. But this model is also the starting point for developing a data analysis method that enables the detection of movement and interaction mechanisms of the investigated localized solutions. The topic is rounded of by applying the data analysis to real experimental data and comparing the experimental observations to the predictions of the model. A comprehensive publication covering the interesting topic of localized solutions in reaction diffusion systems in its width and its relation to the well known phenomena of spirals and patterns does not yet exist, and this is the third reason for writing this book. Although the book focuses on a specific experimental system the model equations are as simple as possible so that the discussed methods should be adaptable to a large class of systems showing particle-like structures. Therefore, this book should attract not only the experienced scientist, who is interested in self-organization phenomena, but also the student, who would like to understand the investigation of a complex system on the basis of a continuous description.
Download or read book Periodic Precipitation written by H. K. Henisch and published by Elsevier. This book was released on 2014-06-28 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: Containing illustrations, worked examples, graphs and tables, this book deals with periodic precipitation (also known as Liesegang Ring formation) in terms of mathematical models and their logical consequences, and is entirely concerned with microcomputer analysis and software development. Three distinctive periodic precipitation mechanisms are included: binary diffusion-reaction; solubility modulation, and competitive particle growth. The book provides didactic illustrations of a valuable investigational procedure, in the form of hypothetical experimentation by microcomputer. The development of appropriate software is described and the resulting programs are available separately on disk. The software (for IBM compatible microcomputers; 5 1/4 and 3 1/2 inch disks available) will be sold separately by, The Carnation Press, PO Box 101, State College, PA 16804, USA.
Download or read book Numerical Bifurcation Analysis for Reaction Diffusion Equations written by Zhen Mei and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is the first to provide readers with numerical tools for a systematic analysis of bifurcation problems in reaction-diffusion equations. Many examples and figures illustrate analysis of bifurcation scenario and implementation of numerical schemes. Readers will gain a thorough understanding of numerical bifurcation analysis and the necessary tools for investigating nonlinear phenomena in reaction-diffusion equations.
Download or read book Parabolic Equations in Biology written by Benoît Perthame and published by Springer. This book was released on 2015-09-09 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents several fundamental questions in mathematical biology such as Turing instability, pattern formation, reaction-diffusion systems, invasion waves and Fokker-Planck equations. These are classical modeling tools for mathematical biology with applications to ecology and population dynamics, the neurosciences, enzymatic reactions, chemotaxis, invasion waves etc. The book presents these aspects from a mathematical perspective, with the aim of identifying those qualitative properties of the models that are relevant for biological applications. To do so, it uncovers the mechanisms at work behind Turing instability, pattern formation and invasion waves. This involves several mathematical tools, such as stability and instability analysis, blow-up in finite time, asymptotic methods and relative entropy properties. Given the content presented, the book is well suited as a textbook for master-level coursework.
Download or read book Pattern Formation In Complex Dissipative Systems Fluid Patterns Liquid Crystals Chemical Reactions written by S Kai and published by World Scientific. This book was released on 1992-09-15 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, the problems of pattern formation in physics, chemistry and other related fields in complex and nonlinear dissipative systems are studied. Main subjects discussed are formation mechanisms, properties, statistics, characterization and dynamics of periodic and nonperiodic patterns in the electrohydrodynamics in liquid crystals, Rayleigh-Benard convection, crystallization, viscous fingering and Belouzov-Zhabotinsky chemical reaction. Recent developments in topological and defect-mediated chaos, chaos in systems with large degrees of freedom and turbulence-turbulence transitions are also discussed.
Download or read book Reaction Transport Systems written by Vicenc Mendez and published by Springer Science & Business Media. This book was released on 2010-06-10 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the dynamics of reaction-diffusion systems, with a focus on fronts and stationary spatial patterns. Emphasis is on systems that are non-standard in the sense that either the transport is not simply classical diffusion (Brownian motion) or the system is not homogeneous. A important feature is the derivation of the basic phenomenological equations from the mesoscopic system properties. Topics addressed include transport with inertia, described by persistent random walks and hyperbolic reaction-transport equations and transport by anomalous diffusion, in particular subdiffusion, where the mean square displacement grows sublinearly with time. In particular reaction-diffusion systems are studied where the medium is in turn either spatially inhomogeneous, compositionally heterogeneous or spatially discrete. Applications span a vast range of interdisciplinary fields and the systems considered can be as different as human or animal groups migrating under external influences, population ecology and evolution, complex chemical reactions, or networks of biological cells. Several chapters treat these applications in detail.
Download or read book New Trends in Nonlinear Dynamics and Pattern Forming Phenomena written by Pierre Coullet and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: The basic aim of the NATO Advanced Research Workshop on "New Trends in Nonlinear Dynamics and Pattern-Forming Phenomena: The Geometry of Nonequilibrium" was to bring together researchers from various areas of physics to review and explore new ideas regarding the organisation of systems driven far from equilibrium. Such systems are characterized by a close relationship between broken spatial and tempo ral symmetries. The main topics of interest included pattern formation in chemical systems, materials and convection, traveling waves in binary fluids and liquid crystals, defects and their role in the disorganisa tion of structures, spatio-temporal intermittency, instabilities and large-scale vortices in open flows, the mathematics of non-equilibrium systems, turbulence, and last but not least growth phenomena. Written contributions from participants have been grouped into chapters addressing these different areas. For additional clarity, the first chapter on pattern formation has been subdivided into sections. One of the main concerns was to focus on the unifying features between these diverse topics. The various scientific communities repre sented were encouraged to discuss and compare their approach so as to mutually benefit their respective fields. We hope that, to a large degree, these goals have been met and we thank all the participants for their efforts. The workshop was held in Cargese (Corsica, France) at the Institut d'Etudes Scientifiques from August 2nd to August 12th, 1988. We greatly thank Yves Pomeau and Daniel Walgraef who, as members of the organising committee, gave us valuable advice and encouragements.
Download or read book Pattern Formation at Interfaces written by Pierre Colinet and published by Springer Science & Business Media. This book was released on 2010-03-26 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with modern methods of nonlinear stability theory applied to problems of continuous media mechanics in the presence of interfaces, with applications to materials science, chemical engineering, heat transfer technologies, as well as in combustion and other reaction-diffusion systems. Interfaces play a dominant role at small scales, and their correct modeling is therefore also crucial in the rapidly expanding fields of microfluidics and nanotechnologies. To this aim, the book combines contributions of eminent specialists in the field, with a special emphasis on rigorous and predictive approaches. Other goals of this volume are to allow the reader to identify key problems of high scientific value, and to see the similarity between a variety of seemingly different physical problems.
Download or read book Pattern Formation in Continuous and Coupled Systems written by Martin Golubitsky and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications PATTERN FORMATION IN CONTINUOUS AND COUPLED SYSTEMS is based on the proceedings of a workshop with the same title, but goes be yond the proceedings by presenting a series of mini-review articles that sur vey, and provide an introduction to, interesting problems in the field. The workshop was an integral part of the 1997-98 IMA program on "EMERG ING APPLICATIONS OF DYNAMICAL SYSTEMS." I would like to thank Martin Golubitsky, University of Houston (Math ematics) Dan Luss, University of Houston (Chemical Engineering), and Steven H. Strogatz, Cornell University (Theoretical and Applied Mechan ics) for their excellent work as organizers of the meeting and for editing the proceedings. I also take this opportunity to thank the National Science Foundation (NSF), and the Army Research Office (ARO), whose financial support made the workshop possible. Willard Miller, Jr., Professor and Director v PREFACE Pattern formation has been studied intensively for most of this cen tury by both experimentalists and theoreticians, and there have been many workshops and conferences devoted to the subject. In the IMA workshop on Pattern Formation in Continuous and Coupled Systems held May 11-15, 1998 we attempted to focus on new directions in the patterns literature.
Download or read book Applications of Nonlinear Analysis written by Themistocles M. Rassias and published by Springer. This book was released on 2018-06-29 with total page 932 pages. Available in PDF, EPUB and Kindle. Book excerpt: New applications, research, and fundamental theories in nonlinear analysis are presented in this book. Each chapter provides a unique insight into a large domain of research focusing on functional equations, stability theory, approximation theory, inequalities, nonlinear functional analysis, and calculus of variations with applications to optimization theory. Topics include: Fixed point theory Fixed-circle theory Coupled fixed points Nonlinear duality in Banach spaces Jensen's integral inequality and applications Nonlinear differential equations Nonlinear integro-differential equations Quasiconvexity, Stability of a Cauchy-Jensen additive mapping Generalizations of metric spaces Hilbert-type integral inequality, Solitons Quadratic functional equations in fuzzy Banach spaces Asymptotic orbits in Hill’sproblem Time-domain electromagnetics Inertial Mann algorithms Mathematical modelling Robotics Graduate students and researchers will find this book helpful in comprehending current applications and developments in mathematical analysis. Research scientists and engineers studying essential modern methods and techniques to solve a variety of problems will find this book a valuable source filled with examples that illustrate concepts.
Download or read book Pattern Formation and Dynamics in Nonequilibrium Systems written by Michael Cross and published by Cambridge University Press. This book was released on 2009-07-16 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: An account of how complex patterns form in sustained nonequilibrium systems; for graduate students in biology, chemistry, engineering, mathematics, and physics.
Download or read book Local Bifurcations Center Manifolds and Normal Forms in Infinite Dimensional Dynamical Systems written by Mariana Haragus and published by Springer Science & Business Media. This book was released on 2010-11-23 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: An extension of different lectures given by the authors, Local Bifurcations, Center Manifolds, and Normal Forms in Infinite Dimensional Dynamical Systems provides the reader with a comprehensive overview of these topics. Starting with the simplest bifurcation problems arising for ordinary differential equations in one- and two-dimensions, this book describes several tools from the theory of infinite dimensional dynamical systems, allowing the reader to treat more complicated bifurcation problems, such as bifurcations arising in partial differential equations. Attention is restricted to the study of local bifurcations with a focus upon the center manifold reduction and the normal form theory; two methods that have been widely used during the last decades. Through use of step-by-step examples and exercises, a number of possible applications are illustrated, and allow the less familiar reader to use this reduction method by checking some clear assumptions. Written by recognised experts in the field of center manifold and normal form theory this book provides a much-needed graduate level text on bifurcation theory, center manifolds and normal form theory. It will appeal to graduate students and researchers working in dynamical system theory.
Download or read book Spatial Dynamics and Pattern Formation in Biological Populations written by Ranjit Kumar Upadhyay and published by CRC Press. This book was released on 2021-02-23 with total page 449 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covers the fundamental concepts and mathematical skills required to analyse reaction-diffusion models for biological populations. Focuses on mathematical modeling and numerical simulations using basic conceptual and classic models of population dynamics, Virus and Brain dynamics. Covers wide range of models using spatial and non-spatial approaches. Covers single, two and multispecies reaction-diffusion models from ecology and models from bio-chemistry. Uses Mathematica for problem solving and MATLAB for pattern formations. Contains solved Examples and Problems in Exercises.