Download or read book Pattern Recognition in Practice II written by L.N. Kanal and published by Elsevier. This book was released on 2012-12-02 with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 1985 Amsterdam conference brought together researchers active in pattern recognition methodology and the development of practical applications. The first part of the book covers various methodological aspects of image processing, knowledge based and model driven image understanding systems, 3-D reconstruction methods, and application oriented papers. Part II deals with aspects of statistical pattern recognition, the problem of population classification, and topics common to both pattern recognition and artificial intelligence.
Download or read book Pattern Recognition in Practice II written by Edzard S. Gelsema and published by North Holland. This book was released on 1986 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 1985 Amsterdam conference brought together researchers active in pattern recognition methodology and the development of practical applications. The first part of the book covers various methodological aspects of image processing, knowledge based and model driven image understanding systems, 3-D reconstruction methods, and application oriented papers. Part II deals with aspects of statistical pattern recognition, the problem of population classification, and topics common to both pattern recognition and artificial intelligence.
Download or read book Pattern Recognition written by Sergios Theodoridis and published by Elsevier. This book was released on 2003-05-15 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to "learn" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10 years of teaching experience, the text was developed by the authors through use in their own classrooms.*Approaches pattern recognition from the designer's point of view*New edition highlights latest developments in this growing field, including independent components and support vector machines, not available elsewhere*Supplemented by computer examples selected from applications of interest
Download or read book Fundamentals of Pattern Recognition and Machine Learning written by Ulisses Braga-Neto and published by Springer Nature. This book was released on 2020-09-10 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Pattern Recognition and Machine Learning is designed for a one or two-semester introductory course in Pattern Recognition or Machine Learning at the graduate or advanced undergraduate level. The book combines theory and practice and is suitable to the classroom and self-study. It has grown out of lecture notes and assignments that the author has developed while teaching classes on this topic for the past 13 years at Texas A&M University. The book is intended to be concise but thorough. It does not attempt an encyclopedic approach, but covers in significant detail the tools commonly used in pattern recognition and machine learning, including classification, dimensionality reduction, regression, and clustering, as well as recent popular topics such as Gaussian process regression and convolutional neural networks. In addition, the selection of topics has a few features that are unique among comparable texts: it contains an extensive chapter on classifier error estimation, as well as sections on Bayesian classification, Bayesian error estimation, separate sampling, and rank-based classification. The book is mathematically rigorous and covers the classical theorems in the area. Nevertheless, an effort is made in the book to strike a balance between theory and practice. In particular, examples with datasets from applications in bioinformatics and materials informatics are used throughout to illustrate the theory. These datasets are available from the book website to be used in end-of-chapter coding assignments based on python and scikit-learn. All plots in the text were generated using python scripts, which are also available on the book website.
Download or read book Pattern Recognition in Industry written by Phiroz Bhagat and published by Elsevier. This book was released on 2005-03-30 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: - "Find it hard to extract and utilise valuable knowledge from the ever-increasing data deluge?" If so, this book will help, as it explores pattern recognition technology and its concomitant role in extracting useful information to build technical and business models to gain competitive industrial advantage. - *Based on first-hand experience in the practice of pattern recognition technology and its development and deployment for profitable application in Industry. - Phiroz Bhagat is often referred to as the pioneer of neural net and pattern recognition technology, and is uniquely qualified to write this book. He brings more than two decades of experience in the "real-world" application of cutting-edge technology for competitive advantage in industry. Two wave fronts are upon us today: we are being bombarded by an enormous amount of data, and we are confronted by continually increasing technical and business advances. Ideally, the endless stream of data should be one of our major assets. However, this potential asset often tends to overwhelm rather than enrich. Competitive advantage depends on our ability to extract and utilize nuggets of valuable knowledge and insight from this data deluge. The challenges that need to be overcome include the under-utilization of available data due to competing priorities, and the separate and somewhat disparate existing data systems that have difficulty interacting with each other. Conventional approaches to formulating models are becoming progressively more expensive in time and effort. To impart a competitive edge, engineering science in the 21st century needs to augment traditional modelling processes by auto-classifying and self-organizing data; developing models directly from operating experience, and then optimizing the results to provide effective strategies and operating decisions. This approach has wide applicability; in areas ranging from manufacturing processes, product performance and scientific research, to financial and business fields. This monograph explores pattern recognition technology, and its concomitant role in extracting useful knowledge to build technical and business models directly from data, and in optimizing the results derived from these models within the context of delivering competitive industrial advantage. It is not intended to serve as a comprehensive reference source on the subject. Rather, it is based on first-hand experience in the practice of this technology: its development and deployment for profitable application in industry. The technical topics covered in the monograph will focus on the triad of technological areas that constitute the contemporary workhorses of successful industrial application of pattern recognition. These are: systems for self-organising data; data-driven modelling; and genetic algorithms as robust optimizers. - "Find it hard to extract and utilise valuable knowledge from the ever-increasing data deluge?" If so, this book will help, as it explores pattern recognition technology and its concomitant role in extracting useful information to build technical and business models to gain competitive industrial advantage. - Based on first-hand experience in the practice of pattern recognition technology and its development and deployment for profitable application in Industry. - Phiroz Bhagat is often referred to as the pioneer of neural net and pattern recognition technology, and is uniquely qualified to write this book. He brings more than two decades of experience in the "real-world" application of cutting-edge technology for competitive advantage in industry.
Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Download or read book Pattern Recognition and Neural Networks written by Brian D. Ripley and published by Cambridge University Press. This book was released on 2007 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1996 book explains the statistical framework for pattern recognition and machine learning, now in paperback.
Download or read book Process Mining Techniques for Pattern Recognition written by Vikash Yadav and published by CRC Press. This book was released on 2022-02-27 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the theory, practice, and concepts of process mining techniques in detail, especially pattern recognition in diverse society, science, medicine, engineering, and business. The book deliberates several perspectives on process mining techniques in the broader context of data science and big data approaches. Process Mining Techniques for Pattern Recognition: Concepts, Theory, and Practice provides an introduction to process mining techniques and pattern recognition. After that, it delivers the fundamentals of process modelling and mining essential to comprehend the book. The text emphasizes discovery as an important process mining task and includes case studies as well as real-life examples to guide users in successfully applying process mining techniques for pattern recognition in practice. Intended to be an introduction to process mining and pattern recognition for students, academics, and practitioners, this book is perfect for those who want to learn the basics, and also gain an understanding of the concepts on a deeper level.
Download or read book Pattern Recognition in Practice IV Multiple Paradigms Comparative Studies and Hybrid Systems written by E.S. Gelsema and published by Elsevier. This book was released on 2014-06-28 with total page 593 pages. Available in PDF, EPUB and Kindle. Book excerpt: The era of detailed comparisons of the merits of techniques of pattern recognition and artificial intelligence and of the integration of such techniques into flexible and powerful systems has begun.So confirm the editors of this fourth volume of Pattern Recognition in Practice, in their preface to the book.The 42 quality papers are sourced from a broad range of international specialists involved in developing pattern recognition methodologies and those using pattern recognition techniques in their professional work. The publication is divided into six sections: Pattern Recognition, Signal and Image Processing, Probabilistic Reasoning, Neural Networks, Comparative Studies, and Hybrid Systems, giving prospective users a feeling for the applicability of the various methods in their particular field of specialization.
Download or read book Pattern Recognition Theory and Applications written by Pierre A. Devijver and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the outcome of a NATO Advanced Study Institute on Pattern Recog nition Theory and Applications held in Spa-Balmoral, Belgium, in June 1986. This Institute was the third of a series which started in 1975 in Bandol, France, at the initia tive of Professors K. S. Fu and A. Whinston, and continued in 1981 in Oxford, UK, with Professors K. S. Fu, J. Kittler and L. -F. Pau as directors. As early as in 1981, plans were made to pursue the series in about 1986 and possibly in Belgium, with Professor K. S. Fu and the present editors as directors. Unfortunately, Ie sort en decida autrement: Professor Fu passed away in the spring of 1985. His sudden death was an irreparable loss to the scientific community and to all those who knew him as an inspiring colleague, a teacher or a dear friend. Soon after, Josef Kittler and I decided to pay a small tribute to his memory by helping some of his plans to materialize. With the support of the NATO Scientific Affairs Division, the Institute became a reality. It was therefore but natural that the proceedings of the Institute be dedicated to him. The book contains most of the papers that were presented at the Institute. Papers are grouped along major themes which hopefully represent the major areas of contem porary research. These are: 1. Statistical methods and clustering techniques 2. Probabilistic relaxation techniques 3. From Markovian to connectionist models 4.
Download or read book Neural Networks for Pattern Recognition written by Christopher M. Bishop and published by Oxford University Press. This book was released on 1995-11-23 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.
Download or read book Handbook of Pattern Recognition and Computer Vision written by C. H. Chen and published by World Scientific. This book was released on 1999 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: The very significant advances in computer vision and pattern recognition and their applications in the last few years reflect the strong and growing interest in the field as well as the many opportunities and challenges it offers. The second edition of this handbook represents both the latest progress and updated knowledge in this dynamic field. The applications and technological issues are particularly emphasized in this edition to reflect the wide applicability of the field in many practical problems. To keep the book in a single volume, it is not possible to retain all chapters of the first edition. However, the chapters of both editions are well written for permanent reference.
Download or read book Artificial Intelligence in Theory and Practice II written by Max Bramer and published by Springer. This book was released on 2010-08-17 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: The papers in this volume comprise the refereed proceedings of the conference ‘ Artificial Intelligence in Theory and Practice’ (IFIP AI 2008), which formed part of the 20th World Computer Congress of IFIP, the International Federation for Information Processing (WCC-2008), in Milan, Italy in September 2008. The conference is organised by the IFIP Technical Committee on Artificial Intelligence (Technical Committee 12) and its Working Group 12.5 (Artificial Intelligence Applications). All papers were reviewed by at least two members of our Program Committee. Final decisions were made by the Executive Program Committee, which comprised John Debenham (University of Technology, Sydney, Australia), Ilias Maglogiannis (University of Aegean, Samos, Greece), Eunika Mercier-Laurent (KIM, France) and myself. The best papers were selected for the conference, either as long papers (maximum 10 pages) or as short papers (maximum 5 pages) and are included in this volume. The international nature of IFIP is amply reflected in the large number of countries represented here. The conference also featured invited talks by Prof. Nikola Kasabov (Auckland University of Technology, New Zealand) and Prof. Lorenza Saitta (University of Piemonte Orientale, Italy). I should like to thank the conference chair, John Debenham for all his efforts and the members of our program committee for reviewing papers to a very tight deadline.
Download or read book Syntactic and Structural Pattern Recognition written by Horst Bunke and published by World Scientific. This book was released on 1990 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is currently the only one on this subject containing both introductory material and advanced recent research results. It presents, at one end, fundamental concepts and notations developed in syntactic and structural pattern recognition and at the other, reports on the current state of the art with respect to both methodology and applications. In particular, it includes artificial intelligence related techniques, which are likely to become very important in future pattern recognition.The book consists of individual chapters written by different authors. The chapters are grouped into broader subject areas like “Syntactic Representation and Parsing”, “Structural Representation and Matching”, “Learning”, etc. Each chapter is a self-contained presentation of one particular topic. In order to keep the original flavor of each contribution, no efforts were undertaken to unify the different chapters with respect to notation. Naturally, the self-containedness of the individual chapters results in some redundancy. However, we believe that this handicap is compensated by the fact that each contribution can be read individually without prior study of the preceding chapters. A unification of the spectrum of material covered by the individual chapters is provided by the subject and author index included at the end of the book.
Download or read book Applied Pattern Recognition written by Dietrich W.R. Paulus and published by Morgan Kaufmann Publishers. This book was released on 1998 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book demonstrates the efficiency of the C++ programming language in the realm of pattern recognition and pattern analysis. It introduces the basics of software engineering, image and speech processing, als well as fundamental mathematical tools for pattern recognition. Step by step the C++ programming language is discribed. Each step is illustrated by examples based on challenging problems in image und speech processing. Particular emphasis is put on object-oriented programming and the implementation of efficient algorithms. The book proposes a general class hierarchy for image segmentation. The essential parts of an implementation are presented. An object-oriented system for speech classification based on stochastic models is described.
Download or read book Computational Intelligence for Pattern Recognition written by Witold Pedrycz and published by Springer. This book was released on 2018-04-30 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents a comprehensive and up-to-date review of fuzzy pattern recognition. It carefully discusses a range of methodological and algorithmic issues, as well as implementations and case studies, and identifies the best design practices, assesses business models and practices of pattern recognition in real-world applications in industry, health care, administration, and business. Since the inception of fuzzy sets, fuzzy pattern recognition with its methodology, algorithms, and applications, has offered new insights into the principles and practice of pattern classification. Computational intelligence (CI) establishes a comprehensive framework aimed at fostering the paradigm of pattern recognition. The collection of contributions included in this book offers a representative overview of the advances in the area, with timely, in-depth and comprehensive material on the conceptually appealing and practically sound methodology and practices of CI-based pattern recognition.
Download or read book Rough Fuzzy Pattern Recognition written by Pradipta Maji and published by John Wiley & Sons. This book was released on 2012-02-14 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems development, making it easier to master such tasks as classification, clustering, and feature selection. Rough-Fuzzy Pattern Recognition examines the important underlying theory as well as algorithms and applications, helping readers see the connections between theory and practice. The first chapter provides an introduction to pattern recognition and data mining, including the key challenges of working with high-dimensional, real-life data sets. Next, the authors explore such topics and issues as: Soft computing in pattern recognition and data mining A mathematical framework for generalized rough sets, incorporating the concept of fuzziness in defining the granules as well as the set Selection of non-redundant and relevant features of real-valued data sets Selection of the minimum set of basis strings with maximum information for amino acid sequence analysis Segmentation of brain MR images for visualization of human tissues Numerous examples and case studies help readers better understand how pattern recognition models are developed and used in practice. This text—covering the latest findings as well as directions for future research—is recommended for both students and practitioners working in systems design, pattern recognition, image analysis, data mining, bioinformatics, soft computing, and computational intelligence.