EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Path Integrals On Group Manifolds  Representation independent Propagators For General Lie Groups

Download or read book Path Integrals On Group Manifolds Representation independent Propagators For General Lie Groups written by Wolfgang Tome and published by World Scientific. This book was released on 1998-03-31 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: The quantization of physical systems moving on group and symmetric spaces has been an area of active research over the past three decades. This book shows that it is possible to introduce a representation-independent propagator for a real, separable, connected and simply connected Lie group with irreducible, square-integrable representations. For a given set of kinematical variables this propagator is a single generalized function independent of any particular choice of fiducial vector and the irreducible representations of the Lie group generated by these kinematical variables, which nonetheless correctly propagates each element of a continuous representation based on the coherent states associated with these kinematical variables.Furthermore, the book shows that it is possible to construct regularized lattice phase space path integrals for a real, separable, connected and simply connected Lie group with irreducible, square-integrable representations, and although the configuration space is in general a multidimensional curved manifold, it is shown that the resulting lattice phase space path integral has the form of a lattice phase space path integral on a multidimensional flat manifold. Hence, a novel and extremely natural phase space path integral quantization is obtained for general physical systems whose kinematical variables are the generators of a connected and simply connected Lie group. This novel phase space path integral quantization is (a) exact, (b) more general than, and (c) free from the limitations of the previously considered path integral quantizations of free physical systems moving on group manifolds.To illustrate the general theory, a representation-independent propagator is explicitly constructed for SU(2) and the affine group.

Book Path Integrals on Group Manifolds

Download or read book Path Integrals on Group Manifolds written by Wolfgang Tom‚ and published by World Scientific. This book was released on 1998 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author explains the theory clearly and the book is almost self-contained Contemporary Physics, 2000

Book Subject Guide to Books in Print

Download or read book Subject Guide to Books in Print written by and published by . This book was released on 1991 with total page 2460 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Books In Print 2004 2005

Download or read book Books In Print 2004 2005 written by Ed Bowker Staff and published by R. R. Bowker. This book was released on 2004 with total page 3274 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 1998 with total page 684 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Quantum Theory  Groups and Representations

Download or read book Quantum Theory Groups and Representations written by Peter Woit and published by Springer. This book was released on 2017-11-01 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.

Book Expansion in Finite Simple Groups of Lie Type

Download or read book Expansion in Finite Simple Groups of Lie Type written by Terence Tao and published by American Mathematical Soc.. This book was released on 2015-04-16 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.

Book Quantum Theory for Mathematicians

Download or read book Quantum Theory for Mathematicians written by Brian C. Hall and published by Springer Science & Business Media. This book was released on 2013-06-19 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.

Book Condensed Matter Field Theory

Download or read book Condensed Matter Field Theory written by Alexander Altland and published by Cambridge University Press. This book was released on 2010-03-11 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.

Book Noncommutative Geometry  Quantum Fields and Motives

Download or read book Noncommutative Geometry Quantum Fields and Motives written by Alain Connes and published by American Mathematical Soc.. This book was released on 2019-03-13 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.

Book Eigenfunctions of the Laplacian on a Riemannian Manifold

Download or read book Eigenfunctions of the Laplacian on a Riemannian Manifold written by Steve Zelditch and published by American Mathematical Soc.. This book was released on 2017-12-12 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.

Book String Theory and M Theory

    Book Details:
  • Author : Katrin Becker
  • Publisher : Cambridge University Press
  • Release : 2006-12-07
  • ISBN : 9780521860697
  • Pages : 756 pages

Download or read book String Theory and M Theory written by Katrin Becker and published by Cambridge University Press. This book was released on 2006-12-07 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697.

Book Mirror Symmetry

    Book Details:
  • Author : Kentaro Hori
  • Publisher : American Mathematical Soc.
  • Release : 2003
  • ISBN : 0821829556
  • Pages : 954 pages

Download or read book Mirror Symmetry written by Kentaro Hori and published by American Mathematical Soc.. This book was released on 2003 with total page 954 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thorough and detailed exposition is the result of an intensive month-long course on mirror symmetry sponsored by the Clay Mathematics Institute. It develops mirror symmetry from both mathematical and physical perspectives with the aim of furthering interaction between the two fields. The material will be particularly useful for mathematicians and physicists who wish to advance their understanding across both disciplines. Mirror symmetry is a phenomenon arising in string theory in which two very different manifolds give rise to equivalent physics. Such a correspondence has significant mathematical consequences, the most familiar of which involves the enumeration of holomorphic curves inside complex manifolds by solving differential equations obtained from a ``mirror'' geometry. The inclusion of D-brane states in the equivalence has led to further conjectures involving calibrated submanifolds of the mirror pairs and new (conjectural) invariants of complex manifolds: the Gopakumar-Vafa invariants. This book gives a single, cohesive treatment of mirror symmetry. Parts 1 and 2 develop the necessary mathematical and physical background from ``scratch''. The treatment is focused, developing only the material most necessary for the task. In Parts 3 and 4 the physical and mathematical proofs of mirror symmetry are given. From the physics side, this means demonstrating that two different physical theories give isomorphic physics. Each physical theory can be described geometrically, and thus mirror symmetry gives rise to a ``pairing'' of geometries. The proof involves applying $R\leftrightarrow 1/R$ circle duality to the phases of the fields in the gauged linear sigma model. The mathematics proof develops Gromov-Witten theory in the algebraic setting, beginning with the moduli spaces of curves and maps, and uses localization techniques to show that certain hypergeometric functions encode the Gromov-Witten invariants in genus zero, as is predicted by mirror symmetry. Part 5 is devoted to advanced topi This one-of-a-kind book is suitable for graduate students and research mathematicians interested in mathematics and mathematical and theoretical physics.

Book Supergravity

    Book Details:
  • Author : Daniel Z. Freedman
  • Publisher : Cambridge University Press
  • Release : 2012-04-05
  • ISBN : 1139642855
  • Pages : 626 pages

Download or read book Supergravity written by Daniel Z. Freedman and published by Cambridge University Press. This book was released on 2012-04-05 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supergravity, together with string theory, is one of the most significant developments in theoretical physics. Written by two of the most respected workers in the field, this is the first-ever authoritative and systematic account of supergravity. The book starts by reviewing aspects of relativistic field theory in Minkowski spacetime. After introducing the relevant ingredients of differential geometry and gravity, some basic supergravity theories (D=4 and D=11) and the main gauge theory tools are explained. In the second half of the book, complex geometry and N=1 and N=2 supergravity theories are covered. Classical solutions and a chapter on AdS/CFT complete the book. Numerous exercises and examples make it ideal for Ph.D. students, and with applications to model building, cosmology and solutions of supergravity theories, it is also invaluable to researchers. A website hosted by the authors, featuring solutions to some exercises and additional reading material, can be found at www.cambridge.org/supergravity.

Book Towards the Mathematics of Quantum Field Theory

Download or read book Towards the Mathematics of Quantum Field Theory written by Frédéric Paugam and published by Springer Science & Business Media. This book was released on 2014-02-20 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ambitious and original book sets out to introduce to mathematicians (even including graduate students ) the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in use. This in turn promotes the interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, though mathematicians are the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second part presents a large family of examples of classical field theories, both from experimental and theoretical physics, while the third part provides an introduction to quantum field theory, presents various renormalization methods, and discusses the quantization of factorization algebras.

Book Functional Integration

    Book Details:
  • Author : Pierre Cartier
  • Publisher : Cambridge University Press
  • Release : 2006-11-30
  • ISBN : 1139462881
  • Pages : 7 pages

Download or read book Functional Integration written by Pierre Cartier and published by Cambridge University Press. This book was released on 2006-11-30 with total page 7 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this text, Cartier and DeWitt-Morette, using their complementary interests and expertise, successfully condense and apply the essentials of Functional Integration to a great variety of systems, showing this mathematically elusive technique to be a robust, user friendly and multipurpose tool.

Book Physics Briefs

Download or read book Physics Briefs written by and published by . This book was released on 1991 with total page 1328 pages. Available in PDF, EPUB and Kindle. Book excerpt: