Download or read book Path Integral Approach to Quantum Physics written by Gert Roepstorff and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Specifically designed to introduce graduate students to the functional integration method in contemporary physics as painlessly as possible, the book concentrates on the conceptual problems inherent in the path integral formalism. Throughout, the striking interplay between stochastic processes, statistical physics and quantum mechanics comes to the fore, and all the methods of fundamental interest are generously illustrated by important physical examples.
Download or read book Path Integrals in Quantum Mechanics Statistics Polymer Physics and Financial Markets written by Hagen Kleinert and published by World Scientific. This book was released on 2004 with total page 1512 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the third, significantly expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations. In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions. The powerful Feynman -- Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals. Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbationexpansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders. Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chem-Simons theory of particles with fractional statistics (anyohs) is introduced and applied to explain the fractional quantum Hall effect. The relevance of path integrals to financial markets is discussed, and improvements of the famous Black -- Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.
Download or read book Path Integrals and Hamiltonians written by Belal E. Baaquie and published by Cambridge University Press. This book was released on 2014-03-27 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a pedagogical introduction to the essential principles of path integrals and Hamiltonians, this book describes cutting-edge quantum mathematical techniques applicable to a vast range of fields, from quantum mechanics, solid state physics, statistical mechanics, quantum field theory, and superstring theory to financial modeling, polymers, biology, chemistry, and quantum finance. Eschewing use of the Schrödinger equation, the powerful and flexible combination of Hamiltonian operators and path integrals is used to study a range of different quantum and classical random systems, succinctly demonstrating the interplay between a system's path integral, state space, and Hamiltonian. With a practical emphasis on the methodological and mathematical aspects of each derivation, this is a perfect introduction to these versatile mathematical methods, suitable for researchers and graduate students in physics and engineering.
Download or read book Path Integrals In Quantum Mechanics Statistics Polymer Physics And Financial Markets 5th Edition written by Hagen Kleinert and published by World Scientific. This book was released on 2009-05-18 with total page 1626 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have been made possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's time-sliced formula to include singular attractive 1/r- and 1/r2-potentials. The second is a new nonholonomic mapping principle carrying physical laws in flat spacetime to spacetimes with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.In addition to the time-sliced definition, the author gives a perturbative, coordinate-independent definition of path integrals, which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely products of distributions.The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent results. The convergence is uniform from weak to strong couplings, opening a way to precise evaluations of analytically unsolvable path integrals in the strong-coupling regime where they describe critical phenomena.Tunneling processes are treated in detail, with applications to the lifetimes of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A variational treatment extends the range of validity to small barriers. A corresponding extension of the large-order perturbation theory now also applies to small orders.Special attention is devoted to path integrals with topological restrictions needed to understand the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are developed which account for the fact, recently experienced in the world markets, that large fluctuations occur much more frequently than in Gaussian distributions.
Download or read book Path Integrals In Quantum Mechanics Statistics Polymer Physics And Financial Markets 4th Edition written by Hagen Kleinert and published by World Scientific Publishing Company. This book was released on 2006-07-19 with total page 1593 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the fourth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have become possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's famous formula to include singular attractive 1/r and 1/r2 potentials. The second is a simple quantum equivalence principle governing the transformation of euclidean path integrals to spaces with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations.In addition to the time-sliced definition, the author gives a perturbative definition of path integrals which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely integrals over products of distributions.The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent expansions. The convergence is uniform from weak to strong couplings, opening a way to precise approximate evaluations of analytically unsolvable path integrals.Tunneling processes are treated in detail. The results are used to determine the lifetime of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A new variational treatment extends the range of validity of previous tunneling theories from large to small barriers. A corresponding extension of large-order perturbation theory also applies now to small orders.Special attention is devoted to path integrals with topological restrictions. These are relevant to the understanding of the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The Chern-Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect.The relevance of path integrals to financial markets is discussed, and improvements of the famous Black-Scholes formula for option prices are given which account for the fact that large market fluctuations occur much more frequently than in the commonly used Gaussian distributions.The author's other book on ‘Critical Properties of φ4 Theories’ gives a thorough introduction to the field of critical phenomena and develops new powerful resummation techniques for the extraction of physical results from the divergent perturbation expansions.
Download or read book Path Integral Quantization and Stochastic Quantization written by Michio Masujima and published by Springer. This book was released on 2000-05-06 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, we discuss the path integral quantization and the stochastic quantization of classical mechanics and classical field theory. For the description of the classical theory, we have two methods, one based on the Lagrangian formalism and the other based on the Hamiltonian formal ism. The Harniltonian formalisni is derived from the Lagrangian formalism. In the standard formalism of quantum mechanics, we usually make use of the Hamiltonian formalism. This fact originates from the following circumstance which dates back to the birth of quantum mechanics. The first formalism of quantum mechanics is Schrodinger's wave mechan ics. In this approach, we regard the Hamilton Jacobi equation of analytical mechanics as the Eikonal equation of "geometrical mechanics". Bsed on the optical analogy, we obtain the Schrodinger equation as a result of the inverse of the Eikonal approximation to the Hamilton Jacobi equation, and thus we arrive at "wave mechanics" . The second formalism of quantum mechanics is Heisenberg's "matrix me chanics". In this approach, we arrive at the Heisenberg equation of motion frorn consideration of the consistency of the Ritz combination principle, the Bohr quantization condition and the Fourier analysis of a physical quantity. These two forrnalisrns make up the Hamiltonian formalism of quantum me chanics.
Download or read book Path Integrals For Pedestrians written by Ennio Gozzi and published by World Scientific Publishing Company. This book was released on 2015-11-18 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to provide a quick pedagogical introduction to path integrals. It contains original material that never before has appeared in a book, for example the path integrals for the Wigner functions and for Classical Mechanics. This application to Classical Mechanics connects different fields like Hamiltonian mechanics and differential geometry, so the book is suitable for students and researchers from various disciplines.
Download or read book Classical Topology and Quantum States written by A. P. Balachandran and published by World Scientific. This book was released on 1991 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the role of topology in the quantization of classical systems. It is also an introduction to topological solitons with special emphasis on Skyrmions. As regards the first aspect, several issues of current interest are dealt with at a reasonably elementary level. Examples are principal fibre bundles and their role in quantum physics, the possibility of spinorial quantum states in a Lagrangian theory based on tensorial variables, and multiply connected configuration spaces and associated quantum phenomena like the QCD q angle and exotic statistics. The ideas are also illustrated by simple examples such as the spinning particle, the charge-monopole system and strings in 3+1 dimensions. The application of these ideas to quantum gravity is another subject treated at an introductory level. An attempt has been made in this book to introduce the reader to the significance of topology for many distinct physical systems such as spinning particles, the charge- monopole system, strings, Skyrmions, QCD and gravity. The book is an outgrowth of lectures given by the authors at various institutions and conferences.
Download or read book Bosonization written by Michael Stone and published by World Scientific. This book was released on 1994-12-23 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bosonization is a useful technique for studying systems of interacting fermions in low dimensions. It has applications in both particle and condensed matter physics.This book contains reprints of papers on the method as used in these fields. The papers range from the classic work of Tomonaga in the 1950's on one-dimensional electron gases, through the discovery of fermionic solitons in the 1970's, to integrable systems and bosonization on Riemann surfaces. A four-chapter pedagogical introduction by the editor should make the book accessible to graduate students and experienced researchers alike.
Download or read book Many Body Quantum Theory in Condensed Matter Physics written by Henrik Bruus and published by Oxford University Press. This book was released on 2004-09-02 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to quantum field theory applied to condensed matter physics. The topics cover modern applications in electron systems and electronic properties of mesoscopic systems and nanosystems. The textbook is developed for a graduate or advanced undergraduate course with exercises which aim at giving students the ability to confront real problems.
Download or read book Chaotic Behavior in Quantum Systems written by Giulio Casati and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Six years ago, in June 1977, the first international conference on chaos in classical dynamical systems took place here in Como. For the first time, physicists, mathematicians, biologists, chemists, economists, and others got together to discuss the relevance of the recent progress in nonlinear classical dynamics for their own research field. Immediately after, pUblication of "Nonlinear Science Abstracts" started, which, in turn, led to the Physica D Journal and to a rapid increase of the research activity in the whole area with the creation of numerous "Nonlinear Centers" around the world. During these years great progress has been made in understanding the qualitative behavior of classical dynamical systems and now we can appreciate the beautiful complexity and variety of their motion. Meanwhile, an increasing number of scientists began to wonder whether and how such beautiful structures would persist in quantum motion. Indeed, mainly integrable systems have been previously con sidered by Quantum Mechanics and therefore the problem is open how to describe the qualitative behavior of systems whose classical limit is non-integrable. The present meeting was organized in view of the fact that scientists working in different fields - mathematicians, theoretical physicists, solid state physicists, nuclear physicists, chemists and others - had common problems. Moreover, we felt that it was necessary to clarify some fundamental questions concerning the logical basis for the discussion including the very definition of chaos in Quantum Mechanics.
Download or read book Quantum Finance written by Belal E. Baaquie and published by Cambridge University Press. This book was released on 2007-07-23 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book applies the mathematics and concepts of quantum mechanics and quantum field theory to the modelling of interest rates and the theory of options. Particular emphasis is placed on path integrals and Hamiltonians. Financial mathematics is dominated by stochastic calculus. The present book offers a formulation that is completely independent of that approach. As such many results emerge from the ideas developed by the author. This work will be of interest to physicists and mathematicians working in the field of finance, to quantitative analysts in banks and finance firms and to practitioners in the field of fixed income securities and foreign exchange. The book can also be used as a graduate text for courses in financial physics and financial mathematics.
Download or read book Differential Geometric Methods in Theoretical Physics written by Ling-Lie Chau and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 795 pages. Available in PDF, EPUB and Kindle. Book excerpt: After several decades of reduced contact, the interaction between physicists and mathematicians in the front-line research of both fields recently became deep and fruit ful again. Many of the leading specialists of both fields became involved in this devel opment. This process even led to the discovery of previously unsuspected connections between various subfields of physics and mathematics. In mathematics this concerns in particular knots von Neumann algebras, Kac-Moody algebras, integrable non-linear partial differential equations, and differential geometry in low dimensions, most im portantly in three and four dimensional spaces. In physics it concerns gravity, string theory, integrable classical and quantum field theories, solitons and the statistical me chanics of surfaces. New discoveries in these fields are made at a rapid pace. This conference brought together active researchers in these areas, reporting their results and discussing with other participants to further develop thoughts in future new directions. The conference was attended by SO participants from 15 nations. These proceedings document the program and the talks at the conference. This conference was preceded by a two-week summer school. Ten lecturers gave extended lectures on related topics. The proceedings of the school will also be published in the NATO-AS[ volume by Plenum. The Editors vii ACKNOWLEDGMENTS We would like to thank the many people who have made the conference a success. Furthermore, ·we appreciate the excellent talks. The active participation of everyone present made the conference lively and stimulating. All of this made our efforts worth while.
Download or read book Topological And Geometrical Methods In Field Theory Proceedings Of The 2nd International Symposium written by J Mickelsson and published by World Scientific. This book was released on 1992-03-31 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Coherent Evolution in Noisy Environments written by Andreas Buchleitner and published by Springer. This book was released on 2008-01-11 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last two decades extraordinary progress in the experimental handling of single quantum objects has spurred theoretical research into investigating the coupling between quantum systems and their environment. Decoherence, the gradual deterioration of entanglement due to dissipation and noise fed to the system by the environment, has emerged as a central concept. The present set of lectures is intended as a high-level, but self-contained, introduction into the fields of quantum noise and dissipation.In particular their influence on decoherence and applications pertaining to quantum information and quantum communication are studied, leading the nonspecialist researchers and the advanced students gradually to the forefront of research.
Download or read book Classical And Quantum Field Theory Of Exactly Soluble Nonlinear Systems written by Piotr Garbaczewski and published by World Scientific. This book was released on 1985-07-01 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents:Nonlinear Problems in 1 + 1 and Their LinearizationClassical Field Theory ModelsHamiltonian Formulation, Action-Angle Variables, Solitons, Classical Lattice Models and Lattice Approximants of Classical FieldsQuantization on a Lattice: Relationship Classical-QuantumQuantization on a Lattice: Simple Bose ModelsSpin 1/2 Lattice Systems Related to Nonlinear Bose Problems: Lattice FermionsQuantization in Continuum: Joint Bose-Fermi Spectral Problems in 1 + 1Quantum Meaning of Classical Field Theory for Fermi SystemsOn Infinite Constituent “Elementary” Systems: Canonical (Constituent) Quantization of Soliton FieldsTowards 1 + 3: Problems and Prospects Readership: Mathematical physicists and physicists. Keywords:Nonlinear Fields;Integrability;Solvable Models;Solitons;Continuum and Lattice Models;Quantization;Fermi Fields And Their Classical Counterparts;Relationship Classical-Quantum;Boson-Fermion Reciprocity (Bosonization)
Download or read book Quantum Mechanics written by Gregory L. Naber and published by Walter de Gruyter GmbH & Co KG. This book was released on 2021-09-20 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work covers quantum mechanics by answering questions such as where did the Planck constant and Heisenberg algebra come from, what motivated Feynman to introduce his path integral and why does one distinguish two types of particles, the bosons and fermions. The author addresses all these topics with utter mathematical rigor. The high number of instructive Appendices and numerous Remark sections supply the necessary background knowledge.