EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Handbook on Particle Separation Processes

Download or read book Handbook on Particle Separation Processes written by Arjen van Nieuwenhuijzen and published by IWA Publishing. This book was released on 2011-09-19 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particles in water play an important role in all kinds of water quality and treatment issues. Since the early beginnings of centralised water production and treatment, the main goal of water purification was primarily the removal of water turbidity in order to produce clear water free from visible particles. The Handbook on Particle Separation Processes provides knowledge and expertise from a selected group of international experts with a wealth of experience in the field of particles and particle separation in water and wastewater treatment. The Handbook on Particle Separation Processes includes an edited selection of presentations and workshops held at the academic summer school Particle Separation in Water and Wastewater Treatment, organised under the supervision of the IWA Specialist Group Particle Separation.

Book Particle Separation 2005   Drinking Water Treatment

Download or read book Particle Separation 2005 Drinking Water Treatment written by M. Y. Han and published by International Water Assn. This book was released on 2006 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Particle Separation 2005   Wastewater Treatment

Download or read book Particle Separation 2005 Wastewater Treatment written by Mooyoung Han (Prof.) and published by International Water Assn. This book was released on 2006 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Particle Separation Technologies for Wastewater Treatment

Download or read book Particle Separation Technologies for Wastewater Treatment written by M. Y. Han and published by IWA Publishing. This book was released on 2006-01-01 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Particle separation is a key process in water and wastewater treatment, with a vital role in meeting water quality standards around the world, and encompassing a very wide range of particulates in widely varying contexts. Recent research has extended the field of application of particle separation to include the sub-micron scale, but innovative treatments are being developed across the board. All these aspects were addressed at the Particle Separation 2005 conference. This issue contains 31 papers selected after full peer review that embody the latest advances in particle separation as applied to wastewater treatment technologies. Papers describe fundamental research in particle separation processes, and new developments in coagulation, sedimentation, flotation, filtration and membrane technologies and complex systems. The collection constitutes an essential reference for all scientists and engineers involved in fundamental research or the practical application of particle separation processes in wastewater treatment.

Book Physical and Chemical Separation in Water and Wastewater Treatment

Download or read book Physical and Chemical Separation in Water and Wastewater Treatment written by Norihito Tambo and published by IWA Publishing. This book was released on 2020-11-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based upon half a century of research by the authors, Physical and Chemical Separation in Water and Wastewater Treatment addresses the whole water cycle spectrum, from global hydrological cycle, urban-regional metabolic cycle to individual living and production cycle, with respect to quality control technology based on fundamental science and theories. For every treatment process, basic scientific and environmental physical and chemical natures are explained with respect to those of water and its impurities. Health danger and risks for human beings are also covered. The authors define water qualities on a “Water Quality Matrix” composed of 35 elements. The vertical axis (row), has individual 7digit impurity size from 10-10m (water molecule 3?) to 10-3m (0.1mm sand grains) and in the horizontal axis(column) there are 5 categories of surrogate chemical and biochemical quality indices. The same 35 element matrix is used to correspond with several typical water quality treatments, unit-operation/unit-process, with a suitable characteristic grouping of the elements. The authors then present “the Water Quality Conversion Matrix” or “Water Quality Treatment Matrix”. With respect to typical treatment processes, the basic concept and scientific background are explained and the background of the technologies is clarified. Mechanisms of the process are explained and a kinetic process is formulated. The kinetics are experimentally verified quantitatively with important equilibrium and rate constants. Based on the authors’ research, various new treatment technologies are proposed with high efficiency, high capacity and less energy, and with steady operation ability. This comprehensive reference book is intended for undergraduate and graduate students, and also serves as a guide book for practical engineers and industry and university researchers.

Book Aspects on Particle Characteristics and Separation Mechanisms in Wastewater Treatment

Download or read book Aspects on Particle Characteristics and Separation Mechanisms in Wastewater Treatment written by M. Ljunggren and published by . This book was released on 2003 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dissolved Air Flotation and Microscreening for Particle Separation in Wastewater Treatment

Download or read book Dissolved Air Flotation and Microscreening for Particle Separation in Wastewater Treatment written by Michael Ljunggren and published by . This book was released on 2006 with total page 64 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Onsite Wastewater Treatment Systems Manual

Download or read book Onsite Wastewater Treatment Systems Manual written by and published by . This book was released on 2002 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This manual contains overview information on treatment technologies, installation practices, and past performance."--Introduction.

Book Advances in Wastewater Treatment

Download or read book Advances in Wastewater Treatment written by Giorgio Mannina and published by . This book was released on 2018 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Advances in Wastewater Treatment

Download or read book Advances in Wastewater Treatment written by Giorgio Mannina and published by IWA Publishing. This book was released on 2018-10-15 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Wastewater Treatment presents a compendium of the key topics surrounding wastewater treatment, assembled by looking at the future technologies, and provides future perspectives in wastewater treatment and modelling. It covers the fundamentals and innovative wastewater treatment processes (such as membrane bioreactors and granular process). Furthermore, it focuses attention on mathematical modelling aspects in the field of wastewater treatments by highlighting the key role of models in process design, operation and control. Other topics include: • Anaerobic digestion • Biological nutrient removal • Instrumentation, control and automation • Computational fluid dynamics in wastewater • IFAS systems • New frontiers in wastewater treatment • Greenhouse gas emissions from wastewater treatment Each topic is addressed by discussing past, present and future trends. Advances in Wastewater Treatment is a valid support for researchers, practitioners and also students to have a frame of the frontiers in wastewater treatment and modelling.

Book Wastewater Pathogens

    Book Details:
  • Author : Michael H. Gerardi
  • Publisher : John Wiley & Sons
  • Release : 2004-10-28
  • ISBN : 0471710423
  • Pages : 191 pages

Download or read book Wastewater Pathogens written by Michael H. Gerardi and published by John Wiley & Sons. This book was released on 2004-10-28 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to wastewater pathogens The fourth volume in Wiley's Wastewater Microbiology series, Wastewater Pathogens offers wastewater personnel a practical guide that is free of overly technical jargon. Designed especially for operators, the text provides straight facts on the biology of treatment as well as appropriate protective measures. Coverage includes: * An overview of relevant history, hazards, and organisms * Viruses, bacteria, and fungi * Protozoa and helminthes * Ectoparasites and rodents * Aerosols, foam, and sludge * Disease transmission and the body's defenses * Removal, inactivation, and destruction of pathogens * Hygiene measures, protective equipment, and immunizations

Book Optimization of Micro Processes in Fine Particle Agglomeration by Pelleting Flocculation

Download or read book Optimization of Micro Processes in Fine Particle Agglomeration by Pelleting Flocculation written by Benjamin Oyegbile and published by CRC Press. This book was released on 2016-06-22 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Efficient particle separation in order to meet stringent regulatory standards represent one of the biggest challenges facing the process industry operators today. Emerging environmental problems such as climate change, population growth and natural resource depletion make it more compelling to undertake research into alternative phase separation techniques and optimization of existing ones. Meeting this challenge requires innovative, revolutionary and integrated approach in the design and optimization of various unit processes in fine particle separation. Flocculation is widely used as an effective phase separation technique across many process industries such as water and wastewater treatment and in minerals processing. In this work, a new pre-treatment technique was developed using a patented bench scale reactor unit as a technical proof of concept. Furthermore, the book provides a valuable insight into the hydrodynamics and fluid-particle interactions within the agglomeration units. The relatively high solids content of the stable pellets (approximately 30 %) and very low residual turbidity of the post-sedimentation supernatant (7 NTU) clearly demonstrate the potential of this technique. In addition to significantly improving the subsequent solid-liquid separation efficiency, this study also showed that the effluent can be recycled back into the sewer network or utilized for non-portable reuse. The findings obtained from this research will be extremely useful in the scaling up and optimization of the reactor system.

Book Green Technologies for Wastewater Treatment

Download or read book Green Technologies for Wastewater Treatment written by Giusy Lofrano and published by Springer Science & Business Media. This book was released on 2012-04-02 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: In order to analyse the challenges posed by the quest for sustainability, Green Technologies for Wastewater treatment: Energy Recovery and Emerging Compounds Removal evaluates water management together with energy use. The strong effects that the release of emerging pollutants such as endocrine disruptors (EDCs), pharmaceuticals and personal care products (PPCPs) have in wastewater reuse applications are examined, as well as the need to optimize the energy consumption in wastewater treatment. More specifically, this volume focuses on: - Presenting the advantages linked to the application of chemically assisted primary sedimentation (CAPS) that enables energy optimization of wastewater treatment plants and points to the possibility of wastewater as a possible resource; - Discussing the analytical problems related to the analytical detection of emerging pollutants and of their transformation products; - Comparing the efficiency of MBR plants for removing trace pollutants with conventional systems; - Evaluating the application of Wet Oxidation (WO) for the treatment of aqueous effluents to remove trace pollutants; - Reviewing the application of Photo-Fenton process and complementary treatment systems (H2O2/UV-C and Fenton’s reagent) for the degradation of two industrial pollutant categories with significant endocrine disrupting properties: alkyl phenols (nonyl and octyl phenols) and bisphenol A. Green Technologies for Wastewater treatment: Energy Recovery and Emerging Compounds Removal will be of great interest to students, technicians, and academics alike who are interested in evaluating and selecting the technologies that lead to better and more sustainable treatment of these huge classes of pollutants.

Book Standard Methods for the Examination of Water and Wastewater

Download or read book Standard Methods for the Examination of Water and Wastewater written by American Public Health Association and published by . This book was released on 1981 with total page 1254 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Source Separation and Decentralization for Wastewater Management

Download or read book Source Separation and Decentralization for Wastewater Management written by Tove A. Larsen and published by IWA Publishing. This book was released on 2013-02-01 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. Editors: Tove A. Larsen, Kai M. Udert and Judit Lienert, Eawag - Swiss Federal Institute of Aquatic Science and Technology, Switzerland. Contributors: Yuval Alfiya, Technion - Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Prof. Dr. M. Bruce Beck, University of Georgia, Warnell School of Forestry and Natural Resources; Dr. Christian Binz, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Markus Boller, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Prof. Dr. Eran Friedler, Technion – Israel Institute of Technology, Faculty of Civil and Environmental Engineering; Zenah Bradford-Hartke, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Shelley Brown-Malker, Very Small Particle Company Ltd; Bert Bundervoet, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. David Butler, University of Exeter, Centre for Water Systems; Dr. Christopher A. Buzie, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Dana Cordell, University of Technology, Sydney (UTS), Institute for Sustainable Futures (ISF); Dr. Vasileios Diamantis, Democritus University of Thrace, Department of Environmental Engineering; Prof. Dr. Jan Willem Erisman, Louis Bolk Institute; VU University Amsterdam, Department of Earth Sciences; Barbara Evans, University of Leeds, School of Civil Engineering; Prof. Dr. Malin Falkenmark, Stockholm International Water Institute; Dr. Ted Gardner, Central Queensland University, Institute for Resource Industries and Sustainability; Dr. Heiko Gebauer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Prof. em. Dr. Willi Gujer, Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering (BAUG); Prof. Dr. Bruce Jefferson, Cranfield University, Cranfield Water Science Institute; Prof. Dr. Paul Jeffrey, Cranfield University, Cranfield Water Science Institute; Sarina Jenni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Håkan Jönsson, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Ïsik Kabdasli, Ïstanbul Technical University, Civil Engineering Faculty; Prof. Dr. Jörg Keller, The University of Queensland, Advanced Water Management Centre (AWMC); Prof. Dr. Klaus Kömmerer, Leuphana Universität Lüneburg, Institute of Sustainable and Environmental Chemistry; Dr. Katarzyna Kujawa-Roeleveld, Wageningen University, Agrotechnology and Food Sciences Group; Dr. Tove A. Larsen, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Michele Laureni, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. Dr. Gregory Leslie, The University of New South Wales, School of Chemical Engineering and UNESCO Centre for Membrane Science and Technology; Dr. Harold Leverenz, University of California at Davis, Department of Civil and Environmental Engineering; Dr. Judit Lienert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Social Sciences (ESS); Prof. Dr. Jürg Londong, Bauhaus-Universität Weimar, Department of Urban Water Management and Sanitation; Dr. Christoph Lüthi, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Water and Sanitation in Developing Countries (Sandec); Prof. Dr. Max Maurer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Urban Water Management (SWW); Swiss Federal Institute of Technology Zürich (ETHZ), Department of Civil, Environmental and Geomatic Engineering; Prof. em. Dr. Gustaf Olsson, Lund University, Department of Measurement Technology and Industrial Electrical Engineering (MIE); Prof. Dr. Ralf Otterpohl, Hamburg University of Technology, Institute of Wastewater Management and Water Protection; Dr. Bert Palsma, STOWA, Dutch Foundation for Applied Water Research; Dr. Arne R. Panesar, Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH; Prof. Dr. Bruce E. Rittmann, Arizona State University, Swette Center for Environmental Biotechnology; Prof. Dr. Hansruedi Siegrist, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Dr. Ashok Sharma, Commonwealth Scientific and Industrial Research Organisation, Australia, Land and Water Division; Prof. Dr. Thor Axel Stenström, Stockholm Environment Institute, Bioresources Group; Norwegian University of Life Sciences, Department of Mathematical Science and Technology; Dr. Eckhard Störmer, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Innovation Research in Utility Sectors (Cirus); Bjartur Swart, STOWA, Dutch Foundation for Applied Water Research; MWH North Europe; Prof. em. Dr. George Tchobanoglous, University of California at Davis, Department of Civil and Environmental Engineering; Elizabeth Tilley, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec); Swiss Federal Institute of Technology Zürich (ETHZ), Centre for Development and Cooperation (NADEL); Prof. Dr. Bernhard Truffer, Eawag, Swiss Federal Institute of Aquatic Science and Technology; Innovation Research in Utility Sectors (Cirus); Prof. Dr. Olcay Tünay, Ïstanbul Technical University, Civil Engineering Faculty; Dr. Kai M. Udert, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Process Engineering Department (Eng); Prof. em. Dr. Willy Verstraete, Ghent University, Laboratory Microbial Ecology and Technology (LabMET); Prof. Dr. Björn Vinnerås, SLU - Swedish University of Agricultural Sciences, Department of Energy and Technology; Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water (W+T); Ecole Polytechnique Fédérale de Lausanne (EPFL),School of Architecture, Civil and Environmental Engineering (ENAC); Prof. em. Dr. Peter A. Wilderer, Technische Universität München, Institute for Advanced Study; Prof. Dr. Jun Xia, Chinese Academy of Sciences (CAS), Center for Water Resources Research and Key Laboratory of Water Cycle and Related Surface Processes; Prof. Dr. Grietje Zeeman, Wageningen University, Agrotechnology and Food Sciences Group

Book Pretreatment for Separation

    Book Details:
  • Author : IAWQ/IWSA Joint Specialist Group on Particle Separation. Workshop
  • Publisher : International Water Assn
  • Release : 1998-01-01
  • ISBN : 9780080433868
  • Pages : 147 pages

Download or read book Pretreatment for Separation written by IAWQ/IWSA Joint Specialist Group on Particle Separation. Workshop and published by International Water Assn. This book was released on 1998-01-01 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Separation of Particles from Water

Download or read book Separation of Particles from Water written by John Gregory and published by Elsevier Science & Technology. This book was released on 1993 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: