EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Computational Methods For Two phase Flow And Particle Transport  With Cd rom

Download or read book Computational Methods For Two phase Flow And Particle Transport With Cd rom written by Wen Ho Lee and published by World Scientific Publishing Company. This book was released on 2013-03-22 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.

Book Particle fluid Two phase Flow

Download or read book Particle fluid Two phase Flow written by Jinghai Li and published by . This book was released on 1994 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Particle fluid Two phase Flow Modeling

Download or read book Particle fluid Two phase Flow Modeling written by and published by . This book was released on 1992 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper describes a numerical scheme and computer program, DISCON, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between-thermal instantaneous and the averaged two-fluid model. It solves the Eulerian continuity, momentum, and energy equations for each liquid control volume, and the Lagrangian mass, momentum, energy, and position equations for each bubble. The bubbles are modeled individually using a large representative number of bubbles thus avoiding the numerical diffusion associated with Eulerian models. DISCON has been used to calculate the bubbling of air through a column of water and the subcooled boiling of water in a flow channel. The results of these calculations are presented.

Book Two Phase Flow

    Book Details:
  • Author : Cl Kleinstreuer
  • Publisher : Routledge
  • Release : 2017-11-01
  • ISBN : 1351406485
  • Pages : 472 pages

Download or read book Two Phase Flow written by Cl Kleinstreuer and published by Routledge. This book was released on 2017-11-01 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate text provides a unified treatment of the fundamental principles of two-phase flow and shows how to apply the principles to a variety of homogeneous mixture as well as separated liquid-liquid, gas-solid, liquid-solid, and gas-liquid flow problems, which may be steady or transient, laminar or turbulent.Each chapter contains several sample problems, which illustrate the outlined theory and provide approaches to find simplified analytic descriptions of complex two-phase flow phenomena.This well-balanced introductory text will be suitable for advanced seniors and graduate students in mechanical, chemical, biomedical, nuclear, environmental and aerospace engineering, as well as in applied mathematics and the physical sciences. It will be a valuable reference for practicing engineers and scientists. A solutions manual is available to qualified instructors.

Book Mathematical Modeling of Disperse Two Phase Flows

Download or read book Mathematical Modeling of Disperse Two Phase Flows written by Christophe Morel and published by Springer. This book was released on 2015-07-17 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, amongst others. This book is highly suitable for students in the subject area, but may also be a useful reference text for more advanced scientists and engineers.

Book Modelling and Experimentation in Two Phase Flow

Download or read book Modelling and Experimentation in Two Phase Flow written by Volfango Bertola and published by Springer. This book was released on 2014-05-04 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an up-to-date review of recent advances in the study of two-phase flows, with focus on gas-liquid flows, liquid-liquid flows, and particle transport in turbulent flows. The book is divided into several chapters, which after introducing basic concepts lead the reader through a more complex treatment of the subjects. The reader will find an extensive review of both the older and the more recent literature, with abundance of formulas, correlations, graphs and tables. A comprehensive (though non exhaustive) list of bibliographic references is provided at the end of each chapter. The volume is especially indicated for researchers who would like to carry out experimental, theoretical or computational work on two-phase flows, as well as for professionals who wish to learn more about this topic.

Book Thermo Fluid Dynamics of Two Phase Flow

Download or read book Thermo Fluid Dynamics of Two Phase Flow written by Mamoru Ishii and published by Springer Science & Business Media. This book was released on 2010-11-10 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermo-fluid Dynamics of Two-Phase Flow, Second Edition is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of particular significance for those working in the field of computational fluid dynamics, new equations and coverage of 1 dimensional drift flux models and a new chapter on porous media formulation.

Book Two phase Flow Modeling with Discrete Particles

Download or read book Two phase Flow Modeling with Discrete Particles written by and published by . This book was released on 1992 with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: The design of efficient heat exchangers in which the working fluid changes phase requires accurate modeling of two-phase fluid flow. The local Navier-Stokes equations form the basic continuum equations for this flow situation. However, the local instantaneous model using these equations is intractable for afl but the simplest problems. AH the practical models for two-phase flow analysis are based on equations that have been averaged over control volumes. These models average out the detailed description within the control volumes and rely on flow regime maps to determine the distribution of the two phases within a control volume. Flow regime maps depend on steady state models and probably are not correct for dynamic models. Numerical simulations of the averaged two-phase flow models are usually performed using a two-fluid Eulerian description for the two phases. Eulerian descriptions have the advantage of having simple boundary conditions, but the disadvantage of introducing numerical diffusion, i.e., sharp interfaces are not maintained as the flow develops, but are diffused. Lagrangian descriptions have the advantage of being able to track sharp interfaces without diffusion, but they have the disadvantage of requiring more complicated boundary conditions. This paper describes a numerical scheme and attendant computer program, DISCON2, for the calculation of two-phase flows that does not require the use of flow regime maps. This model is intermediate between the intractable local instantaneous and the averaged two-fluid model. This new model uses a combination of an Eulerian and a Lagrangian representation of the two phases. The dispersed particles (bubbles or drops) are modeled individually using a large representative number of particles, each with their own Lagrangian description. The continuous phases (liquid or gas) use an Eulerian description.

Book Multiphase Flows with Droplets and Particles  Second Edition

Download or read book Multiphase Flows with Droplets and Particles Second Edition written by Clayton T. Crowe and published by CRC Press. This book was released on 2011-08-26 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the publication of the first edition of Multiphase Flow with Droplets and Particles, there have been significant advances in science and engineering applications of multiphase fluid flow. Maintaining the pedagogical approach that made the first edition so popular, this second edition provides a background in this important area of fluid mechanics to those new to the field and a resource to those actively involved in the design and development of multiphase systems. See what’s new in the Second Edition: Chapter on the latest developments in carrier-phase turbulence Extended chapter on numerical modeling that includes new formulations for turbulence and Reynolds stress models Review of the fundamental equations and the validity of the traditional "two-fluid" approach Expanded exercises and a solutions manual A quick look at the table of contents supplies a snapshot of the breadth and depth of coverage found in this completely revised and updated text. Suitable for a first-year graduate (5th year) course as well as a reference for engineers and scientists, the book is clearly written and provides an essential presentation of key topics in the study of gas-particle and gas-droplet flows.

Book Advanced Computational Fluid Dynamics for Emerging Engineering Processes

Download or read book Advanced Computational Fluid Dynamics for Emerging Engineering Processes written by Albert S. Kim and published by BoD – Books on Demand. This book was released on 2019-12-11 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: As researchers deal with processes and phenomena that are geometrically complex and phenomenologically coupled the demand for high-performance computational fluid dynamics (CFD) increases continuously. The intrinsic nature of coupled irreversibility requires computational tools that can provide physically meaningful results within a reasonable time. This book collects the state-of-the-art CFD research activities and future R

Book Thermo fluid Dynamics of Two Phase Flow

Download or read book Thermo fluid Dynamics of Two Phase Flow written by Mamoru Ishii and published by Springer Science & Business Media. This book was released on 2007-03-12 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been written for graduate students, scientists and engineers who need in-depth theoretical foundations to solve two-phase problems in various technological systems. Based on extensive research experiences focused on the fundamental physics of two-phase flow, the authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to a variety of scenarios, including nuclear reactor transient and accident analysis, energy systems, power generation systems and even space propulsion.

Book Two Phase Flows

    Book Details:
  • Author : Shih-i Pai
  • Publisher : Springer-Verlag
  • Release : 2013-07-02
  • ISBN : 3322863484
  • Pages : 373 pages

Download or read book Two Phase Flows written by Shih-i Pai and published by Springer-Verlag. This book was released on 2013-07-02 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Transport Phenomena in Multiphase Systems

Download or read book Transport Phenomena in Multiphase Systems written by Amir Faghri and published by Academic Press. This book was released on 2006 with total page 1072 pages. Available in PDF, EPUB and Kindle. Book excerpt: Engineering students in a wide variety of engineering disciplines from mechanical and chemical to biomedical and materials engineering must master the principles of transport phenomena as an essential tool in analyzing and designing any system or systems wherein momentum, heat and mass are transferred. This textbook was developed to address that need, with a clear presentation of the fundamentals, ample problem sets to reinforce that knowledge, and tangible examples of how this knowledge is put to use in engineering design. Professional engineers, too, will find this book invaluable as reference for everything from heat exchanger design to chemical processing system design and more. * Develops an understanding of the thermal and physical behavior of multiphase systems with phase change, including microscale and porosity, for practical applications in heat transfer, bioengineering, materials science, nuclear engineering, environmental engineering, process engineering, biotechnology and nanotechnology * Brings all three forms of phase change, i.e., liquid vapor, solid liquid and solid vapor, into one volume and describes them from one perspective in the context of fundamental treatment * Presents the generalized integral and differential transport phenomena equations for multi-component multiphase systems in local instance as well as averaging formulations. The molecular approach is also discussed with the connection between microscopic and molecular approaches * Presents basic principles of analyzing transport phenomena in multiphase systems with emphasis on melting, solidification, sublimation, vapor deposition, condensation, evaporation, boiling and two-phase flow heat transfer at the micro and macro levels * Solid/liquid/vapor interfacial phenomena, including the concepts of surface tension, wetting phenomena, disjoining pressure, contact angle, thin films and capillary phenomena, including interfacial balances for mass, species, momentum, and energy for multi-component and multiphase interfaces are discussed * Ample examples and end-of-chapter problems, with Solutions Manual and PowerPoint presentation available to the instructors

Book Dynamics Of Multiphase Media

Download or read book Dynamics Of Multiphase Media written by Robert Iskanderovich Nigmatulin and published by CRC Press. This book was released on 1990-09-01 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 2 of a monograph on current knowledge of phenomena and the theory and analysis of multiphase systems, offering a systematic treatment of energy, mass and momentum exchange in multiphase systems along with other applications which include shock hardening of metals and boiling heat transfer.

Book Cryogenic Two Phase Flow

    Book Details:
  • Author : N. N. Filina
  • Publisher : Cambridge University Press
  • Release : 1996-05-31
  • ISBN : 9780521481922
  • Pages : 152 pages

Download or read book Cryogenic Two Phase Flow written by N. N. Filina and published by Cambridge University Press. This book was released on 1996-05-31 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cryogenic systems that involve two-phase (vapor-liquid) flows are widely used in industries such as aerospace, metallurgy, power engineering, and food production, as well as in high energy physics research. The purpose of this book is to describe characteristic features of cryogenic systems involving two-phase flow, create mathematical models of these systems, and then show how the models may be used to develop optimal designs for practical cryogenic systems. The models are examined using analytical and numerical techniques, and then the predictions are compared to experimental measurements. Since transient phenomena can produce severe and unexpected effects in cryogenic systems, the authors pay particular attention to this important topic. Examples in the book are drawn from cryogenic fluid transport, gasification, and the stabilization of superconducting magnets. Much of this work is related to the development of large Russian systems in the areas of space technology, energy research, and particle physics. This book, the first devoted solely to cryogenic two-phase flow, will be a valuable reference for cryogenic engineers and scientists.

Book Dynamic Modeling Strategy for Flow Regime Transition in Gas Liquid Two Phase Flows

Download or read book Dynamic Modeling Strategy for Flow Regime Transition in Gas Liquid Two Phase Flows written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in which flow regime transition occurs.

Book Solid Liquid Two Phase Flow

Download or read book Solid Liquid Two Phase Flow written by Sümer M. Peker and published by Elsevier. This book was released on 2011-04-18 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an undertaking of a pioneering work of uniting three vast fields of interfacial phenomena, rheology and fluid mechanics within the framework of solid-liquid two phase flow. No wonder, much finer books will be written in the future as the visionary aims of many nations in combining molecular chemistry, biology, transport and interfacial phenomena for the fundamental understanding of processes and capabilities of new materials will be achieved. Solid-liquid systems where solid particles with a wide range of physical properties, sizes ranging from nano- to macro- scale and concentrations varying from very dilute to highly concentrated, are suspended in liquids of different rheological behavior flowing in various regimes are taken up in this book. Interactions among solid particles in molecular scale are extended to aggregations in the macro scale and related to settling, flow and rheological behavior of the suspensions in a coherent, sequential manner. The classical concept of solid particles is extended to include nanoparticles, colloids, microorganisms and cellular materials. The flow of these systems is investigated under pressure, electrical, magnetic and chemical driving forces in channels ranging from macro-scale pipes to micro channels. Complementary separation and mixing processes are also taken under consideration with micro- and macro-scale counterparts. - Up-to-date including emerging technologies- Coherent, sequential approach- Wide scope: microorganisms, nanoparticles, polymer solutions, minerals, wastewater sludge, etc- All flow conditions, settling and non-settling particles, non-Newtonian flow, etc- Processes accompanying conveying in channels, such as sedimentation, separation, mixing