EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Particle Deposition from Turbulent Flow in a Pipe

Download or read book Particle Deposition from Turbulent Flow in a Pipe written by Pushkar Tandon and published by . This book was released on 1997 with total page 6 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Turbulent Deposition of Aerosol Particles Inside Pipes

Download or read book Turbulent Deposition of Aerosol Particles Inside Pipes written by Timothy Akingbola Ilori and published by . This book was released on 1971 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Particle Deposition in Turbulent Flow

Download or read book Particle Deposition in Turbulent Flow written by David Daniel McCoy and published by . This book was released on 1975 with total page 170 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dispersion and Deposition of Heavy Particles in Turbulent Flows

Download or read book Dispersion and Deposition of Heavy Particles in Turbulent Flows written by Chunyu Jin and published by . This book was released on 2012 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Particles in Wall Bounded Turbulent Flows  Deposition  Re Suspension and Agglomeration

Download or read book Particles in Wall Bounded Turbulent Flows Deposition Re Suspension and Agglomeration written by Jean-Pierre Minier and published by Springer. This book was released on 2016-07-26 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents an up-to-date review of turbulent two-phase flows with the dispersed phase, with an emphasis on the dynamics in the near-wall region. New insights to the flow physics are provided by direct numerical simuation and by fine experimental techniques. Also included are models of particle dynamics in wall-bounded turbulent flows, and a description of particle surface interactions including muti-layer deposition and re-suspension.

Book Turbulent Aerosol Deposition in Large and Small Square Flow Passages

Download or read book Turbulent Aerosol Deposition in Large and Small Square Flow Passages written by William Dwight Gerstler and published by . This book was released on 2000 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Deposition of Particles in a Turbulent Pipe Flow

Download or read book Deposition of Particles in a Turbulent Pipe Flow written by Bennie Mols and published by . This book was released on 1995 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Measurement of Aerosol Deposition Rates in Turbulent Flows

Download or read book Measurement of Aerosol Deposition Rates in Turbulent Flows written by James A. Gieseke and published by . This book was released on 1980 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Particle Deposition from Turbulent Flow in a Divergent Channel

Download or read book Particle Deposition from Turbulent Flow in a Divergent Channel written by Wai-Ting Huang and published by . This book was released on 1997 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Aerosol Science

Download or read book Aerosol Science written by Charles Norman Davies and published by . This book was released on 1966 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Composite work comprising a textbook on branches of aerosol science - covers theoretical and technical aspects of the generation, measurement and use of aerosols. References.

Book Colloidal Particle Deposition in Turbulent Flow

Download or read book Colloidal Particle Deposition in Turbulent Flow written by and published by . This book was released on 1994 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Particles in Turbulent Flows

Download or read book Particles in Turbulent Flows written by Leonid I. Zaichik and published by John Wiley & Sons. This book was released on 2008-12-04 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: The only work available to treat the theory of turbulent flow with suspended particles, this book also includes a section on simulation methods, comparing the model results obtained with the PDF method to those obtained with other techniques, such as DNS, LES and RANS. Written by experienced scientists with background in oil and gas processing, this book is applicable to a wide range of industries -- from the petrol industry and industrial chemistry to food and water processing.

Book Modeling Turbulent Dispersion and Deposition of Airborne Particles in High Temperature Pipe Flows

Download or read book Modeling Turbulent Dispersion and Deposition of Airborne Particles in High Temperature Pipe Flows written by Pritheesh Gnanaselvam and published by . This book was released on 2020 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: The simulations and experiments outlined are designed to explore the effect of existing turbulent dispersion models in predicting particle deposition characteristics at higher temperatures. The continuous phase solution was obtained from using a Reynolds-Averaged Navier Stokes (RANS) turbulence model and the turbulent dispersion was modeled using a Continuous Random Walk (CRW) model. Euler-Maruyama scheme was implemented to solve the non-dimensional Langevin equation to model the stochastic nature of the equation appropriately. Previous studies have shown that the particle deposition characteristics depend greatly on the time step of integration. With the Euler-Maruyama scheme, the CFD results were shown to be less sensitive to the time step of integration and with decrease in time step more stable results were obtained. Direct comparison with the Discrete Random Walk (DRW) model shows that DRW fails to predict flow fluctuations seen by particles in the diffusion-impaction regime. Previous studies of this phenomenon were all performed at ambient conditions. The CRW model was shown to predict impact velocities reasonably well, when the chosen time step of integrations is such that the stochastic and damping term are comparable in magnitude. Presented here are pipe-flow experiments conducted in the High Temperature Deposition Facility (HTDF) with a mean jet velocity of 150 m/s – 200 m/s with exit centerline temperature of 1525K to assess the capability of CRW in predicting particle deposition characteristics at high temperatures. The flow temperature was chosen in such a way that the temperature inside the pipe at any point is higher than the melting point of dust used, so that an `all stick’ condition can be used to model particle-wall interactions. The derivation and the effect of the drift correction and the stochastic terms in the normalized Langevin equation were discussed in detail. Simulations were performed trying to reproduce experimental results with and without injection line. The CFD model without injection line was shown to follow the predicted pipe deposition based on the effective drift correction, whereas the CFD model with injection line did not show significant change in pipe deposition results with velocity. CFD results using the OSU-CRW model posited that the model is more appropriate for turbulent pipe flows in the fully developed region.

Book On the Full Lagrangian Approach and Thermophoretic Deposition in Gas particle Flows

Download or read book On the Full Lagrangian Approach and Thermophoretic Deposition in Gas particle Flows written by David Patrick Healy and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical and experimental studies of particle deposition in turbulent pipe flow have been carried out for over forty years, but some of the most important transport mechanisms are still not well understood. The first part of this thesis is concerned with the calculation of particle density when using Lagrangian methods to predict inertial particle transport in two-dimensional laminar fluid flows. Traditionally, Lagrangian calculations involve integrating the particle equations of motion along particle pathlines, and the particle density is obtained by applying a statistical averaging procedure to those pathlines which intersect a particular computational grid cell. Unfortunately, extremely large numbers of particles are required to reduce the statistical errors to acceptable levels, and this makes the method computationally expensive. Recently, the Full Lagrangian approach has been developed, which allows the direct calculation of the particle density along particle pathlines. This method had previously been applied only to simple analytical flow fields. The application of the method to CFD generated fluid velocity fields was shown to be possible, and the results obtained using the Full Lagrangian approach were compared to those from a traditional Lagrangian approach. It was found that better quality solutions could be obtained with the use of far fewer particle pathlines. An analysis of the manner in which the Full Lagrangian approach deals with particles whose paths cross each other (and the resulting discontinuity in particle density) was also undertaken, and this illustrates the sophistication of the method. The second part of the thesis comprises an experimental and theoretical study of the deposition of small particles in turbulent flows by thermophoresis. Thermophoresis is the phenomenon whereby small particles suspended in a gas in which there exists a temperature gradient experience a force in the direction opposite from that of the temperature gradient. Previous researchers have attempted to impose a radial temperature difference in pipe flow experiments, but have not yet succeeded in attaining a constant thermophoretic force along the length of the pipe. This limits the accuracy and usefulness of the data for the validation of theoretical expressions for the thermophoretic fluxes. An experimental rig has been designed to achieve a constant thermophoretic force. This was done by using an annular geometry with a cold inner wall and hot outer wall. The particle size was varied and the deposition flux was measured for turbulent flow with three temperature differences. The deposition fluxes for small particles were found to be independent of dimensionless particle size, with each increase in temperature difference resulting in an increase in magnitude of the flux. Evidence of a thermophoresis-turbulence coupling was found for intermediate-sized particles, and large particles were not influenced by thermophoresis. A theory of particle deposition, developed for the case of turbulent pipe flow, was modified to study flow in a turbulent annulus, so that theoretical expressions for the thermophoretic fluxes could be included and compared with the experimental results. Agreement with experimental data was quite good, but some deficiencies in a widely used theoretical expression for the thermophoretic flux were exposed. An alternative expression was used, which gave much better agreement with the experimental data, and the mechanisms behind the thermophoresis-turbulence coupling were also investigated. The validation of this expression for the thermophoretic force will allow its inclusion in numerical studies of particle deposition in more complex geometries.

Book Particle deposition in turbulent flow   a review of existing models

Download or read book Particle deposition in turbulent flow a review of existing models written by A. Husain and published by . This book was released on 1982 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems

Download or read book Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems written by Bekkay Hajji and published by Springer Nature. This book was released on 2020-08-14 with total page 858 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes papers presented at the Second International Conference on Electronic Engineering and Renewable Energy (ICEERE 2020), which focus on the application of artificial intelligence techniques, emerging technology and the Internet of things in electrical and renewable energy systems, including hybrid systems, micro-grids, networking, smart health applications, smart grid, mechatronics and electric vehicles. It particularly focuses on new renewable energy technologies for agricultural and rural areas to promote the development of the Euro-Mediterranean region. Given its scope, the book is of interest to graduate students, researchers and practicing engineers working in the fields of electronic engineering and renewable energy.