EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Particle based Numerical Methods for the Simulation of Electromagnetic Plasma Interactions

Download or read book Particle based Numerical Methods for the Simulation of Electromagnetic Plasma Interactions written by Stephen M. Copplestone and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Particle Based Methods

    Book Details:
  • Author : Eugenio Oñate
  • Publisher : Springer Science & Business Media
  • Release : 2011-02-17
  • ISBN : 9400707355
  • Pages : 275 pages

Download or read book Particle Based Methods written by Eugenio Oñate and published by Springer Science & Business Media. This book was released on 2011-02-17 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains 11 chapters written by relevant scientists in the field of particle-based methods and their applications in engineering and applied sciences. The chapters cover most particle-based techniques used in practice including the discrete element method, the smooth particle hydrodynamic method and the particle finite element method. The book will be of interest to researchers and engineers interested in the fundamentals of particle-based methods and their applications.

Book Plasma Physics via Computer Simulation

Download or read book Plasma Physics via Computer Simulation written by C.K. Birdsall and published by CRC Press. This book was released on 2018-10-08 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: Divided into three main parts, the book guides the reader to an understanding of the basic concepts in this fascinating field of research. Part 1 introduces you to the fundamental concepts of simulation. It examines one-dimensional electrostatic codes and electromagnetic codes, and describes the numerical methods and analysis. Part 2 explores the mathematics and physics behind the algorithms used in Part 1. In Part 3, the authors address some of the more complicated simulations in two and three dimensions. The book introduces projects to encourage practical work Readers can download plasma modeling and simulation software — the ES1 program — with implementations for PCs and Unix systems along with the original FORTRAN source code. Now available in paperback, Plasma Physics via Computer Simulation is an ideal complement to plasma physics courses and for self-study.

Book The Hybrid Multiscale Simulation Technology

Download or read book The Hybrid Multiscale Simulation Technology written by Alexander S. Lipatov and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive description of hybrid plasma simulation models providing a very useful summary and guide to the vast literature on this topic.

Book Space Plasma Simulation

Download or read book Space Plasma Simulation written by Jörg Büchner and published by Springer. This book was released on 2008-01-11 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is twofold: to provide an introduction for newcomers to state of the art computer simulation techniques in space plasma physics and an overview of current developments. Computer simulation has reached a stage where it can be a highly useful tool for guiding theory and for making predictions of space plasma phenomena, ranging from microscopic to global scales. The various articles are arranged, as much as possible, according to the - derlying simulation technique, starting with the technique that makes the least number of assumptions: a fully kinetic approach which solves the coupled set of Maxwell’s equations for the electromagnetic ?eld and the equations of motion for a very large number of charged particles (electrons and ions) in this ?eld. Clearly, this is also the computationally most demanding model. Therefore, even with present day high performance computers, it is the most restrictive in terms of the space and time domain and the range of particle parameters that can be covered by the simulation experiments. It still makes sense, therefore, to also use models, which due to their simp- fying assumptions, seem less realistic, although the e?ect of these assumptions on the outcome of the simulation experiments needs to be carefully assessed.

Book Space and Astrophysical Plasma Simulation

Download or read book Space and Astrophysical Plasma Simulation written by Jörg Büchner and published by Springer Nature. This book was released on 2023-03-01 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of contributions covering the major subjects in numerical simulation of space and astrophysical plasma. It introduces the different approaches and methods to model plasma, the necessary computational codes, and applications in the field. The book is rooted in the previous work Space Plasma Simulation (Springer, 2003) and includes the latest developments. It is divided into three parts and all chapters start with an introduction motivating the topic and its use in research and ends with a discussion of its applications. The chapters of the first part contain tutorials of the different basic approaches needed to perform space plasma simulations. This part is particularly useful for graduate students to master the subject. The second part presents more advanced materials for students and researchers who already work with pre-existing codes but want to implement the recent progresses made in the field. The last part of the book discusses developments in the area for researchers who are actively working on advanced simulation approaches like higher order schemes and artificial intelligence, agent-based technologies for multiscale and multi-dimensional systems, which represent the recent innovative contributions made in space plasma research.

Book Particle Methods for Multi Scale and Multi physics

Download or read book Particle Methods for Multi Scale and Multi physics written by Moubin E. T. Al LIU and published by World Scientific. This book was released on 2015-12-28 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-scale and multi-physics modeling is useful and important for all areas in engineering and sciences. Particle Methods for Multi-Scale and Multi-Physics systematically addresses some major particle methods for modeling multi-scale and multi-physical problems in engineering and sciences. It contains different particle methods from atomistic scales to continuum scales, with emphasis on molecular dynamics (MD), dissipative particle dynamics (DPD) and smoothed particle hydrodynamics (SPH). This book covers the theoretical background, numerical techniques and many interesting applications of the particle methods discussed in this text, especially in: micro-fluidics and bio-fluidics (e.g., micro drop dynamics, movement and suspension of macro-molecules, cell deformation and migration); environmental and geophysical flows (e.g., saturated and unsaturated flows in porous media and fractures); and free surface flows with possible interacting solid objects (e.g., wave impact, liquid sloshing, water entry and exit, oil spill and boom movement). The presented methodologies, techniques and example applications will benefit students, researchers and professionals in computational engineering and sciences --

Book Numerical  Particle in Cell  Methods

Download or read book Numerical Particle in Cell Methods written by Yu. N. Grigoryev and published by Walter de Gruyter. This book was released on 2012-02-13 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computer Applications in Plasma Science and Engineering

Download or read book Computer Applications in Plasma Science and Engineering written by Adam T. Drobot and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, which contains 15 contributions, is based on a minicourse held at the 1987 IEEE Plasma Science Meeting. The purpose of the lectures in the course was to acquaint the students with the multidisciplinary nature of computational techniques and the breadth of research areas in plasma science in which computation can address important physics and engineering design issues. These involve: electric and magnetic fields, MHD equations, chemistry, radiation, ionization etc. The contents of the contributions, written subsequent to the minicourse, stress important aspects of computer applications. They are: 1) the numerical methods used; 2) the range of applicability; 3) how the methods are actually employed in research and in the design of devices; and, as a compendium, 4) the multiplicity of approaches possible for any one problem. The materials in this book are organized by both subject and applications which display some of the richness in computational plasma physics.

Book Computational Plasma Physics

Download or read book Computational Plasma Physics written by Toshi Tajima and published by CRC Press. This book was released on 2018-03-14 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: The physics of plasmas is an extremely rich and complex subject as the variety of topics addressed in this book demonstrates. This richness and complexity demands new and powerful techniques for investigating plasma physics. An outgrowth from his graduate course teaching, now with corrections, Tajima's text provides not only a lucid introduction to computational plasma physics, but also offers the reader many examples of the way numerical modeling, properly handled, can provide valuable physical understanding of the nonlinear aspects so often encountered in both laboratory and astrophysical plasmas. Included here are computational methods for modern nonlinear physics as applied to hydrodynamic turbulence, solitons, fast reconnection of magnetic fields, anomalous transports, dynamics of the sun, and more. The text contains examples of problems now solved using computational techniques including those concerning finite-size particles, spectral techniques, implicit differencing, gyrokinetic approaches, and particle simulation.

Book A Full Electromagnetic Particle in Cell Code To Model Collision less Plasmas in Magnetic Traps

Download or read book A Full Electromagnetic Particle in Cell Code To Model Collision less Plasmas in Magnetic Traps written by E. A. Orozco and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A lot of plasma physics problems are not amenable to exact solutions due to many reasons. It is worth mentioning among them, for example, nonlinearity of the motion equations, variable coefficients or non lineal conditions on known or unknown borders. To solve these problems, different types of approximations which are combinations of analytical and numerical simulation methods are put into practice. The problem of plasma behavior in numerous varieties of a minimum-B magnetic trap where the plasma is heated under electron cyclotron resonance (ECR) conditions is the subject of numerical simulation studies. At present, the ECR minimum-B trap forms the principal part of the multi-charge ion sources.There are different numerical methods to model plasmas. Depending of both temperature and concentration, these can be classified in three main groups: fluid models, kinetic models and hybrid models. The fluid models are the most simple way to describe the plasma from macroscopic quantities, which are used for the study of highly collisional plasmas where the mean free path is much smaller than size of plasma (l_mfp “ L). The kinetic models are the most fundamental way to describe plasmas through the distribution function in phase-space for each particle specie; which are used for the study of weakly collisional (l_mfp ∼ L) or collision-less plasmas (l_mfp ” L) from the solution of the Boltzmann or Vlasov equation, respectively [2]. For kinetic simulations there are different method to solve the Boltzmann or Vlasov equation, being the Particle-In-Cell (PIC) codes one the most popular. The hybrid model combine both the fluid and kinetic models, treating some components of the system as a fluid, and others kinetically; which are used for the study of plasmas, may use the PIC method for the kinetic treatment of some species, while other species (that are Maxwellian) are simulated with a fluid model.In this work, a scheme of the relativistic Particle-in-Cell (PIC) code elaborated for an ECR plasma heating study in minimum-B traps is presented. For a PIC numerical simulation, the code is applied to an ECR plasma confined in a minimum-B trap formed by two current coils generating a mirror magnetic configuration and a hexapole permanent magnetic bars to suppress the MHD instabilities.The plasma is maintained in a cylindrical chamber excited at TE_111 mode by 2.45 GHz microwave power. In the obtained magnetostatic field, the ECR conditions are fulfilled on a closed surface of ellipsoidal type. Initially, a Maxwellian homogeneous plasma from ionic temperature of 2 eV being during 81.62 ns, that correspond to 200 cycles of microwaves with an amplitude in the electric field of 1 kV/cm is heated. The electron population can be divided conditionally into a cold group of energies smaller than 0.2 keV, a warm group whose energies are in a range of 3 - 10 keV and hot electrons whose energies are found higher than 10 keV.

Book Computer Simulation Using Particles

Download or read book Computer Simulation Using Particles written by R.W Hockney and published by CRC Press. This book was released on 2021-03-24 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer simulation of systems has become an important tool in scientific research and engineering design, including the simulation of systems through the motion of their constituent particles. Important examples of this are the motion of stars in galaxies, ions in hot gas plasmas, electrons in semiconductor devices, and atoms in solids and liquids. The behavior of the system is studied by programming into the computer a model of the system and then performing experiments with this model. New scientific insight is obtained by observing such computer experiments, often for controlled conditions that are not accessible in the laboratory. Computer Simulation using Particles deals with the simulation of systems by following the motion of their constituent particles. This book provides an introduction to simulation using particles based on the NGP, CIC, and P3M algorithms and the programming principles that assist with the preparations of large simulation programs based on the OLYMPUS methodology. It also includes case study examples in the fields of astrophysics, plasmas, semiconductors, and ionic solids as well as more detailed mathematical treatment of the models, such as their errors, dispersion, and optimization. This resource will help you understand how engineering design can be assisted by the ability to predict performance using the computer model before embarking on costly and time-consuming manufacture.

Book Computational Plasma Science

Download or read book Computational Plasma Science written by Shigeo Kawata and published by Springer Nature. This book was released on 2023-05-09 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents fundamentals of plasma physics with rich references and computational techniques in a concise manner. It particularly focuses on introductions to numerical simulation methods in plasma physics, in addition to those to physics and mathematics in plasma physics. It also presents the fundamentals of numerical methods, which solve mathematical models of plasmas, together with examples of numerical results. A discretization method, the so-called finite difference method, is introduced for particle-in-cell methods and fluid codes, which have been widely employed in plasma physics studies. In addition to the introduction to numerical solutions, it also covers numerical stability. The instabilities and numerical errors significantly influence the results, and for correct results, great efforts are required to avoid such numerical artifacts. The book also carefully discusses the numerical errors, numerical stability, and uncertainty in numerical computations. Readers are expected to have an understanding of fundamental physics of mechanics, electromagnetism, thermodynamics, statistical physics, relativity, fluid dynamics, and mathematics, but the book does not assume background knowledge on plasma. Therefore, it is a first book of plasma physics for upper undergraduate and early graduate students who are interested in learning it.

Book Plasma Simulations by Example

Download or read book Plasma Simulations by Example written by Lubos Brieda and published by CRC Press. This book was released on 2019-12-13 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of plasmas is crucial in improving our understanding of the universe, and they are being increasingly utilised in key technologies such as spacecraft thrusters, plasma medicine, and fusion energy. Providing readers with an easy to follow set of examples that clearly illustrate how simulation codes are written, this book guides readers through how to develop C++ computer codes for simulating plasmas primarily with the kinetic Particle in Cell (PIC) method. This text will be invaluable to advanced undergraduates and graduate students in physics and engineering looking to learn how to put the theory to the test. Features: Provides a step-by-step introduction to plasma simulations with easy to follow examples Discusses the electrostatic and electromagnetic Particle in Cell (PIC) method on structured and unstructured meshes, magnetohydrodynamics (MHD), and Vlasov solvers Covered topics include Direct Simulation Monte Carlo (DSMC) collisions, surface interactions, axisymmetry, and parallelization strategies. Lubos Brieda has over 15 years of experience developing plasma and gas simulation codes for electric propulsion, contamination transport, and plasma-surface interactions. As part of his master’s research work, he developed a 3D ES-PIC electric propulsion plume code, Draco, which is to this date utilized by government labs and private aerospace firms to study plasma thruster plumes. His Ph.D, obtained in 2012 from George Washington University, USA, focused on a multi-scale model for Hall thrusters utilizing fluid-kinetic hybrid PIC codes. He has since then been involved in numerous projects involving development and the use of plasma simulation tools. Since 2014 he has been teaching online courses on plasma simulations through his website: particleincell.com.

Book High Power Laser Plasma Interaction

Download or read book High Power Laser Plasma Interaction written by C. S. Liu and published by Cambridge University Press. This book was released on 2019-05-23 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of high-power laser-plasma interaction has grown in the last few decades, with applications ranging from laser-driven fusion and laser acceleration of charged particles to laser ablation of materials. This comprehensive text covers fundamental concepts including electromagnetics and electrostatic waves, parameter instabilities, laser driven fusion,charged particle acceleration and gamma rays. Two important techniques of laser proton interactions including target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA) are discussed in detail, along with their applications in the field of medicine. An analytical framework is developed for laser beat-wave and wakefield excitation of plasma waves and subsequent acceleration of electrons. The book covers parametric oscillator model and studies the coupling of laser light with collective modes.

Book Space Time Adaptive Numerical Methods

    Book Details:
  • Author : Sascha Schnepp
  • Publisher : Sudwestdeutscher Verlag Fur Hochschulschriften AG
  • Release : 2009
  • ISBN : 9783838106663
  • Pages : 200 pages

Download or read book Space Time Adaptive Numerical Methods written by Sascha Schnepp and published by Sudwestdeutscher Verlag Fur Hochschulschriften AG. This book was released on 2009 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work establishes techniques for adjusting the local spatial resolution of selected numerical methods in a time-adaptive manner. Such techniques are developed within the framework of the Finite Integration Technique (FIT), a hybrid Finite Integration-Finite Volume (FI-FV) Scheme and the Discontinuous Galerkin Method (DGM). While the FIT and the DGM are established methods for the numerical solution of electromagnetic field problems, the FI-FV Scheme is a novel method. The semi-discrete as well as the fully discretized formulations of all considered methods are presented. For both formulations an analysis of the dispersive and dissipative behavior on fixed computational grids is carried out. As a result, asymptotic orders of the dispersion and dissipation errors are established. Techniques for the determination and modification of the discrete electromagnetic field quantities in locally refined regions are presented. The numerical stability of the developed adaptive methods is proven. The developed algorithms are applied to the self-consistent simulation of charged particle dynamics and electrodynamics.