Download or read book Partial Differential Equations arising from Physics and Geometry written by Mohamed Ben Ayed and published by Cambridge University Press. This book was released on 2019-05-02 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents the state of the art in PDEs, including the latest research and short courses accessible to graduate students.
Download or read book Partial Differential Equations III written by Michael E. Taylor and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt: The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis
Download or read book Partial Differential Equations I written by Michael E. Taylor and published by Springer Science & Business Media. This book was released on 2010-10-29 with total page 673 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.
Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Download or read book Partial Differential Equations in Classical Mathematical Physics written by Isaak Rubinstein and published by Cambridge University Press. This book was released on 1998-04-28 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.
Download or read book Partial Differential Relations written by Misha Gromov and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical theory of partial differential equations is rooted in physics, where equations (are assumed to) describe the laws of nature. Law abiding functions, which satisfy such an equation, are very rare in the space of all admissible functions (regardless of a particular topology in a function space). Moreover, some additional (like initial or boundary) conditions often insure the uniqueness of solutions. The existence of these is usually established with some apriori estimates which locate a possible solution in a given function space. We deal in this book with a completely different class of partial differential equations (and more general relations) which arise in differential geometry rather than in physics. Our equations are, for the most part, undetermined (or, at least, behave like those) and their solutions are rather dense in spaces of functions. We solve and classify solutions of these equations by means of direct (and not so direct) geometric constructions. Our exposition is elementary and the proofs of the basic results are selfcontained. However, there is a number of examples and exercises (of variable difficulty), where the treatment of a particular equation requires a certain knowledge of pertinent facts in the surrounding field. The techniques we employ, though quite general, do not cover all geometrically interesting equations. The border of the unexplored territory is marked by a number of open questions throughout the book.
Download or read book Introduction to Partial Differential Equations written by Aslak Tveito and published by Springer Science & Business Media. This book was released on 2008-01-21 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining both the classical theory and numerical techniques for partial differential equations, this thoroughly modern approach shows the significance of computations in PDEs and illustrates the strong interaction between mathematical theory and the development of numerical methods. Great care has been taken throughout the book to seek a sound balance between these techniques. The authors present the material at an easy pace and exercises ranging from the straightforward to the challenging have been included. In addition there are some "projects" suggested, either to refresh the students memory of results needed in this course, or to extend the theories developed in the text. Suitable for undergraduate and graduate students in mathematics and engineering.
Download or read book Partial Differential Equations Arising from Physics and Geometry written by Mohamed Ben Ayed and published by Cambridge University Press. This book was released on 2019-04-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this edited volume leaders in the field of partial differential equations present recent work on topics in PDEs arising from geometry and physics. The papers originate from a 2015 research school organized by CIMPA and MIMS in Hammamet, Tunisia to celebrate the 60th birthday of the late Professor Abbas Bahri. The opening chapter commemorates his life and work. While the research presented in this book is cutting-edge, the treatment throughout is at a level accessible to graduate students. It includes short courses offering readers a unique opportunity to learn the state of the art in evolution equations and mathematical models in physics, which will serve as an introduction for students and a useful reference for established researchers. Finally, the volume includes many open problems to inspire the next generation.
Download or read book Partial Differential Equations in General Relativity written by Alan D. Rendall and published by . This book was released on 2008-04-03 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: A text that will bring together PDE theory, general relativity and astrophysics to deliver an overview of theory of partial differential equations for general relativity. The text will include numerous examples and provide a unique resource for graduate students in mathematics and physics, numerical relativity and cosmology.
Download or read book Partial Differential Equations and Boundary Value Problems with Applications written by Mark A. Pinsky and published by American Mathematical Soc.. This book was released on 2011 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Building on the basic techniques of separation of variables and Fourier series, the book presents the solution of boundary-value problems for basic partial differential equations: the heat equation, wave equation, and Laplace equation, considered in various standard coordinate systems--rectangular, cylindrical, and spherical. Each of the equations is derived in the three-dimensional context; the solutions are organized according to the geometry of the coordinate system, which makes the mathematics especially transparent. Bessel and Legendre functions are studied and used whenever appropriate throughout the text. The notions of steady-state solution of closely related stationary solutions are developed for the heat equation; applications to the study of heat flow in the earth are presented. The problem of the vibrating string is studied in detail both in the Fourier transform setting and from the viewpoint of the explicit representation (d'Alembert formula). Additional chapters include the numerical analysis of solutions and the method of Green's functions for solutions of partial differential equations. The exposition also includes asymptotic methods (Laplace transform and stationary phase). With more than 200 working examples and 700 exercises (more than 450 with answers), the book is suitable for an undergraduate course in partial differential equations.
Download or read book The Action Principle and Partial Differential Equations written by Demetrios Christodoulou and published by Princeton University Press. This book was released on 2000-01-17 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces new methods in the theory of partial differential equations derivable from a Lagrangian. These methods constitute, in part, an extension to partial differential equations of the methods of symplectic geometry and Hamilton-Jacobi theory for Lagrangian systems of ordinary differential equations. A distinguishing characteristic of this approach is that one considers, at once, entire families of solutions of the Euler-Lagrange equations, rather than restricting attention to single solutions at a time. The second part of the book develops a general theory of integral identities, the theory of "compatible currents," which extends the work of E. Noether. Finally, the third part introduces a new general definition of hyperbolicity, based on a quadratic form associated with the Lagrangian, which overcomes the obstacles arising from singularities of the characteristic variety that were encountered in previous approaches. On the basis of the new definition, the domain-of-dependence theorem and stability properties of solutions are derived. Applications to continuum mechanics are discussed throughout the book. The last chapter is devoted to the electrodynamics of nonlinear continuous media.
Download or read book Numerical Partial Differential Equations for Environmental Scientists and Engineers written by Daniel R. Lynch and published by Springer Science & Business Media. This book was released on 2006-06-02 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: For readers with some competence in PDE solution properties, this book offers an interdisciplinary approach to problems occurring in natural environmental media: the hydrosphere, atmosphere, cryosphere, lithosphere, biosphere and ionosphere. It presents two major discretization methods: Finite Difference and Finite Element, plus a section on practical approaches to ill-posed problems. The blend of theory, analysis, and implementation practicality supports solving and understanding complicated problems.
Download or read book Partial Differential Equations written by H. Bateman and published by Walton Press. This book was released on 2008-11 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: PARTIAL DIFFERENTIAL EQUATIONS OF MATHEMATICAL PHYSICS BY H. BAT EM AN, M. A., PH. D. Late Fellow of Trinity College, Cambridge Professor of Mathematics, Theoretical Physics and Aeronautics, California Institute of Technology, Pasadena, California NEW YORK DOVER PUBLICATIONS 1944 First Edition 1932 First American Edition 1944 By special arrangement with the Cambridge University Press and The Macmillan Co. Printed in the U. S. A. Dedicated to MY MOTHER CONTENTS PREFACE page xiii INTRODUCTION xv-xxii CHAPTER I THE CLASSICAL EQUATIONS 1-11-1-14. Uniform motion, boundary conditions, problems, a passage to the limit. 1-7 1-15-1-19. Fouriers theorem, Fourier constants, Cesaros method of summation, Parsevals theorem, Fourier series, the expansion of the integral of a bounded function which is continuous bit by bit. . 7-16 1-21-1-25. The bending of a beam, the Greens function, the equation of three moments, stability of a strut, end conditions, examples. 16-25 1 31-1-36. F ee undamped vibrations, simple periodic motion, simultaneous linear equations, the Lagrangian equations of motion, normal vibrations, com pound pendulum, quadratic forms, Hermit ian forms, examples. 25-40 1-41-1 - 42. Forced oscillations, residual oscillation, examples. 40-44 1-43. Motion with a resistance proportional to the velocity, reduction to alge braic equations. 44 d7 1-44. The equation of damped vibrations, instrumental records. 47-52 1-45-1 - 46. The dissipation function, reciprocal relations. 52-54 1-47-1-49. Fundamental equations of electric circuit theory, Cauchys method of solving a linear equation, Heavisides expansion. 54-6Q 1-51 1-56. The simple wave-equation, wave propagation, associated equations, transmission of vibrations, vibration of a building, vibration of a string, torsional oscillations of a rod, plane waves of sound, waves in a canal, examples. 60-73 1-61-1 - 63. Conjugate functions and systems of partial differential equations, the telegraphic equation, partial difference equations, simultaneous equations involving high derivatives, examplu. 73-77 1-71-1-72. Potentials and stream-functions, motion of a fluid, sources and vortices, two-dimensional stresses, geometrical properties of equipotentials and lines of force, method of inversion, examples. 77-90 1-81-1-82. The classical partial differential equations for Euclidean space, Laplaces equation, systems of partial differential equations of the first order fchich lead to the classical equations, elastic equilibrium, equations leading to the uations of wave-motion, 90-95 S 1 91. Primary solutions, Jacobis theorem, examples. 95-100 1 92. The partial differential equation of the characteristics, bicharacteristics and rays. 101-105 1 93-1 94. Primary solutions of the second grade, primitive solutions of the wave-equation, primitive solutions of Laplaces equation. 105-111 1-95. Fundamental solutions, examples. 111-114 viii Contents CHAPTER n APPLICATIONS OF THE INTEGRAL THEOREMS OF GREEN AND STOKES 2 11-2-12. Greens theorem, Stokes s theorem, curl of a vector, velocity potentials, equation of continuity. pages 116-118 2-13-2-16. The equation of the conduction of heat, diffusion, the drying of wood, the heating of a porous body by a warm fluid, Laplaces method, example. 118-125 2-21-2 22. Riemanns method, modified equation of diffusion, Greens func tions, examples. 126-131 f 2-23-2 26. Green s theorem for a general lineardifferential equation of the second order, characteristics, classification of partial differential equations of the second order, a property of equations of elliptic type, maxima and minima of solutions. 131-138 2-31-2-32. Greens theorem for Laplaces equation, Greens functions, reciprocal relations. 138-144 2-33-2-34. Partial difference equations, associated quadratic form, the limiting process, inequalities, properties of the limit function. 144-152 2-41-2-42...
Download or read book Partial Differential Equations Arising from Physics and Geometry written by and published by . This book was released on 2019 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this edited volume leaders in the field of partial differential equations present recent work on topics in PDEs arising from geometry and physics. The papers originate from a 2015 research school organized by CIMPA and MIMS in Hammamet, Tunisia to celebrate the 60th birthday of the late Professor Abbas Bahri. The opening chapter commemorates his life and work. While the research presented in this book is cutting-edge, the treatment throughout is at a level accessible to graduate students. It includes short courses offering readers a unique opportunity to learn the state of the art in evolution equations and mathematical models in physics, which will serve as an introduction for students and a useful reference for established researchers. Finally, the volume includes many open problems to inspire the next generation.
Download or read book Functional Analysis Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.
Download or read book Partial Differential Equations written by Michael Shearer and published by Princeton University Press. This book was released on 2015-03-01 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors
Download or read book Exterior Differential Systems written by Robert L. Bryant and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a treatment of exterior differential systems. It will in clude both the general theory and various applications. An exterior differential system is a system of equations on a manifold defined by equating to zero a number of exterior differential forms. When all the forms are linear, it is called a pfaffian system. Our object is to study its integral manifolds, i. e. , submanifolds satisfying all the equations of the system. A fundamental fact is that every equation implies the one obtained by exterior differentiation, so that the complete set of equations associated to an exterior differential system constitutes a differential ideal in the algebra of all smooth forms. Thus the theory is coordinate-free and computations typically have an algebraic character; however, even when coordinates are used in intermediate steps, the use of exterior algebra helps to efficiently guide the computations, and as a consequence the treatment adapts well to geometrical and physical problems. A system of partial differential equations, with any number of inde pendent and dependent variables and involving partial derivatives of any order, can be written as an exterior differential system. In this case we are interested in integral manifolds on which certain coordinates remain independent. The corresponding notion in exterior differential systems is the independence condition: certain pfaffian forms remain linearly indepen dent. Partial differential equations and exterior differential systems with an independence condition are essentially the same object.