Download or read book The Koopman Operator in Systems and Control written by Alexandre Mauroy and published by Springer Nature. This book was released on 2020-02-22 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad overview of state-of-the-art research at the intersection of the Koopman operator theory and control theory. It also reviews novel theoretical results obtained and efficient numerical methods developed within the framework of Koopman operator theory. The contributions discuss the latest findings and techniques in several areas of control theory, including model predictive control, optimal control, observer design, systems identification and structural analysis of controlled systems, addressing both theoretical and numerical aspects and presenting open research directions, as well as detailed numerical schemes and data-driven methods. Each contribution addresses a specific problem. After a brief introduction of the Koopman operator framework, including basic notions and definitions, the book explores numerical methods, such as the dynamic mode decomposition (DMD) algorithm and Arnoldi-based methods, which are used to represent the operator in a finite-dimensional basis and to compute its spectral properties from data. The main body of the book is divided into three parts: theoretical results and numerical techniques for observer design, synthesis analysis, stability analysis, parameter estimation, and identification; data-driven techniques based on DMD, which extract the spectral properties of the Koopman operator from data for the structural analysis of controlled systems; and Koopman operator techniques with specific applications in systems and control, which range from heat transfer analysis to robot control. A useful reference resource on the Koopman operator theory for control theorists and practitioners, the book is also of interest to graduate students, researchers, and engineers looking for an introduction to a novel and comprehensive approach to systems and control, from pure theory to data-driven methods.
Download or read book Neural Network Based State Estimation of Nonlinear Systems written by Heidar A. Talebi and published by Springer. This book was released on 2009-12-04 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Neural Network-Based State Estimation of Nonlinear Systems" presents efficient, easy to implement neural network schemes for state estimation, system identification, and fault detection and Isolation with mathematical proof of stability, experimental evaluation, and Robustness against unmolded dynamics, external disturbances, and measurement noises.
Download or read book Modelling and Parameter Estimation of Dynamic Systems written by J.R. Raol and published by IET. This book was released on 2004-08-13 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a detailed examination of the estimation techniques and modeling problems. The theory is furnished with several illustrations and computer programs to promote better understanding of system modeling and parameter estimation.
Download or read book Bayesian Bounds for Parameter Estimation and Nonlinear Filtering Tracking written by Harry L. Van Trees and published by Wiley-IEEE Press. This book was released on 2007-08-31 with total page 951 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first comprehensive development of Bayesian Bounds for parameter estimation and nonlinear filtering/tracking Bayesian estimation plays a central role in many signal processing problems encountered in radar, sonar, communications, seismology, and medical diagnosis. There are often highly nonlinear problems for which analytic evaluation of the exact performance is intractable. A widely used technique is to find bounds on the performance of any estimator and compare the performance of various estimators to these bounds. This book provides a comprehensive overview of the state of the art in Bayesian Bounds. It addresses two related problems: the estimation of multiple parameters based on noisy measurements and the estimation of random processes, either continuous or discrete, based on noisy measurements. An extensive introductory chapter provides an overview of Bayesian estimation and the interrelationship and applicability of the various Bayesian Bounds for both static parameters and random processes. It provides the context for the collection of papers that are included. This book will serve as a comprehensive reference for engineers and statisticians interested in both theory and application. It is also suitable as a text for a graduate seminar or as a supplementary reference for an estimation theory course.
Download or read book Nonlinear system identification 1 Nonlinear system parameter identification written by Robert Haber and published by Springer Science & Business Media. This book was released on 1999 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Integrative Systems Approaches to Natural and Social Dynamics written by M. Matthies and published by Springer Science & Business Media. This book was released on 2001-08-28 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the start of the new millennium, mankind is challenged by a paradox: the more we know about the world the more uncertain we become in understanding and predicting how it works. This book presents an outline of a new basis for Systems Science, and a methodology for its application in complex environmental, economic, social, and technological systems.
Download or read book Parameter Estimation and Inverse Problems written by Richard C. Aster and published by Elsevier. This book was released on 2018-10-16 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more. - Features examples that are illustrated with simple, easy to follow problems that illuminate the details of a particular numerical method - Includes an online instructor's guide that helps professors teach and customize exercises and select homework problems - Covers updated information on adjoint methods that are presented in an accessible manner
Download or read book Nonlinear System Identification written by Stephen A. Billings and published by John Wiley & Sons. This book was released on 2013-07-29 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) model The orthogonal least squares algorithm that allows models to be built term by term where the error reduction ratio reveals the percentage contribution of each model term Statistical and qualitative model validation methods that can be applied to any model class Generalised frequency response functions which provide significant insight into nonlinear behaviours A completely new class of filters that can move, split, spread, and focus energy The response spectrum map and the study of sub harmonic and severely nonlinear systems Algorithms that can track rapid time variation in both linear and nonlinear systems The important class of spatio-temporal systems that evolve over both space and time Many case study examples from modelling space weather, through identification of a model of the visual processing system of fruit flies, to tracking causality in EEG data are all included to demonstrate how easily the methods can be applied in practice and to show the insight that the algorithms reveal even for complex systems NARMAX algorithms provide a fundamentally different approach to nonlinear system identification and signal processing for nonlinear systems. NARMAX methods provide models that are transparent, which can easily be analysed, and which can be used to solve real problems. This book is intended for graduates, postgraduates and researchers in the sciences and engineering, and also for users from other fields who have collected data and who wish to identify models to help to understand the dynamics of their systems.
Download or read book Optimal State Estimation written by Dan Simon and published by John Wiley & Sons. This book was released on 2006-06-19 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.
Download or read book Polynomial Response Maps written by E.D. Sontag and published by Springer. This book was released on 1979-04 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Nonlinear Estimation written by Gavin J.S. Ross and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-Linear Estimation is a handbook for the practical statistician or modeller interested in fitting and interpreting non-linear models with the aid of a computer. A major theme of the book is the use of 'stable parameter systems'; these provide rapid convergence of optimization algorithms, more reliable dispersion matrices and confidence regions for parameters, and easier comparison of rival models. The book provides insights into why some models are difficult to fit, how to combine fits over different data sets, how to improve data collection to reduce prediction variance, and how to program particular models to handle a full range of data sets. The book combines an algebraic, a geometric and a computational approach, and is illustrated with practical examples. A final chapter shows how this approach is implemented in the author's Maximum Likelihood Program, MLP.
Download or read book Spatio Temporal Modeling of Nonlinear Distributed Parameter Systems written by Han-Xiong Li and published by Springer Science & Business Media. This book was released on 2011-02-24 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein systems and their identifi cation methods. Then, the traditional Volterra model is extended to DPS, which results in the spatio-temporal Volterra model and its identification algorithm. All these methods are based on linear time/space separation. Sometimes, the nonlinear time/space separation can play a better role in modeling of very complex processes. Thus, a nonlinear time/space separation based neural modeling is also presented for a class of DPS with more complicated dynamics. Finally, all these modeling approaches are successfully applied to industrial thermal processes, including a catalytic rod, a packed-bed reactor and a snap curing oven. The work is presented giving a unifi ed view from time/space separation. The book also illustrates applications to thermal processes in the electronics packaging and chemical industry. This volume assumes a basic knowledge about distributed parameter systems, system modeling and identifi cation. It is intended for researchers, graduate students and engineers interested in distributed parameter systems, nonlinear systems, and process modeling and control.
Download or read book Nonlinear Parameter Optimization Using R Tools written by John C. Nash and published by John Wiley & Sons. This book was released on 2014-04-03 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Parameter Optimization Using R John C. Nash, Telfer School of Management, University of Ottawa, Canada A systematic and comprehensive treatment of optimization software using R In recent decades, optimization techniques have been streamlined by computational and artificial intelligence methods to analyze more variables, especially under non–linear, multivariable conditions, more quickly than ever before. Optimization is an important tool for decision science and for the analysis of physical systems used in engineering. Nonlinear Parameter Optimization with R explores the principal tools available in R for function minimization, optimization, and nonlinear parameter determination and features numerous examples throughout. Nonlinear Parameter Optimization with R: Provides a comprehensive treatment of optimization techniques Examines optimization problems that arise in statistics and how to solve them using R Enables researchers and practitioners to solve parameter determination problems Presents traditional methods as well as recent developments in R Is supported by an accompanying website featuring R code, examples and datasets Researchers and practitioners who have to solve parameter determination problems who are users of R but are novices in the field optimization or function minimization will benefit from this book. It will also be useful for scientists building and estimating nonlinear models in various fields such as hydrology, sports forecasting, ecology, chemical engineering, pharmaco-kinetics, agriculture, economics and statistics.
Download or read book Parameter Estimation for Nonlinear Systems written by Leehter Yao and published by . This book was released on 1992 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Block oriented Nonlinear System Identification written by Fouad Giri and published by Springer Science & Business Media. This book was released on 2010-08-18 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: Block-oriented Nonlinear System Identification deals with an area of research that has been very active since the turn of the millennium. The book makes a pedagogical and cohesive presentation of the methods developed in that time. These include: iterative and over-parameterization techniques; stochastic and frequency approaches; support-vector-machine, subspace, and separable-least-squares methods; blind identification method; bounded-error method; and decoupling inputs approach. The identification methods are presented by authors who have either invented them or contributed significantly to their development. All the important issues e.g., input design, persistent excitation, and consistency analysis, are discussed. The practical relevance of block-oriented models is illustrated through biomedical/physiological system modelling. The book will be of major interest to all those who are concerned with nonlinear system identification whatever their activity areas. This is particularly the case for educators in electrical, mechanical, chemical and biomedical engineering and for practising engineers in process, aeronautic, aerospace, robotics and vehicles control. Block-oriented Nonlinear System Identification serves as a reference for active researchers, new comers, industrial and education practitioners and graduate students alike.
Download or read book Practical Methods for Optimal Control and Estimation Using Nonlinear Programming written by John T. Betts and published by SIAM. This book was released on 2010-01-01 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: A focused presentation of how sparse optimization methods can be used to solve optimal control and estimation problems.
Download or read book Nonlinearity in Structural Dynamics written by K Worden and published by CRC Press. This book was released on 2019-04-23 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many types of engineering structures exhibit nonlinear behavior under real operating conditions. Sometimes the unpredicted nonlinear behavior of a system results in catastrophic failure. In civil engineering, grandstands at sporting events and concerts may be prone to nonlinear oscillations due to looseness of joints, friction, and crowd movements.