EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Index of Conference Proceedings

Download or read book Index of Conference Proceedings written by British Library. Document Supply Centre and published by . This book was released on 2001 with total page 870 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Science Abstracts

Download or read book Science Abstracts written by and published by . This book was released on 1985 with total page 2080 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book SPE Journal

Download or read book SPE Journal written by and published by . This book was released on 2009 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Mechanics of Elastic Structures

Download or read book Mechanics of Elastic Structures written by John Tinsley Oden and published by Taylor & Francis Group. This book was released on 1981 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Cumulative Book Index

Download or read book The Cumulative Book Index written by and published by . This book was released on 1998 with total page 2348 pages. Available in PDF, EPUB and Kindle. Book excerpt: A world list of books in the English language.

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1997 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Fluid Structure Interaction

Download or read book Computational Fluid Structure Interaction written by Yuri Bazilevs and published by John Wiley & Sons. This book was released on 2013-01-25 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid–solid interface, and the basics of the finite element method. It continues with the ALE and space–time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space–time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: First book to address the state-of-the-art in computational FSI Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space–time methods, isogeometric analysis, and advanced FSI coupling methods Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.

Book Strengthening Forensic Science in the United States

Download or read book Strengthening Forensic Science in the United States written by National Research Council and published by National Academies Press. This book was released on 2009-07-29 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scores of talented and dedicated people serve the forensic science community, performing vitally important work. However, they are often constrained by lack of adequate resources, sound policies, and national support. It is clear that change and advancements, both systematic and scientific, are needed in a number of forensic science disciplines to ensure the reliability of work, establish enforceable standards, and promote best practices with consistent application. Strengthening Forensic Science in the United States: A Path Forward provides a detailed plan for addressing these needs and suggests the creation of a new government entity, the National Institute of Forensic Science, to establish and enforce standards within the forensic science community. The benefits of improving and regulating the forensic science disciplines are clear: assisting law enforcement officials, enhancing homeland security, and reducing the risk of wrongful conviction and exoneration. Strengthening Forensic Science in the United States gives a full account of what is needed to advance the forensic science disciplines, including upgrading of systems and organizational structures, better training, widespread adoption of uniform and enforceable best practices, and mandatory certification and accreditation programs. While this book provides an essential call-to-action for congress and policy makers, it also serves as a vital tool for law enforcement agencies, criminal prosecutors and attorneys, and forensic science educators.

Book Variational Methods in Theoretical Mechanics

Download or read book Variational Methods in Theoretical Mechanics written by J.T. Oden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook written for use in a graduate-level course for students of mechanics and engineering science. It is designed to cover the essential features of modern variational methods and to demonstrate how a number of basic mathematical concepts can be used to produce a unified theory of variational mechanics. As prerequisite to using this text, we assume that the student is equipped with an introductory course in functional analysis at a level roughly equal to that covered, for example, in Kolmogorov and Fomin (Functional Analysis, Vol. I, Graylock, Rochester, 1957) and possibly a graduate-level course in continuum mechanics. Numerous references to supplementary material are listed throughout the book. We are indebted to Professor Jim Douglas of the University of Chicago, who read an earlier version of the manuscript and whose detailed suggestions were extremely helpful in preparing the final draft. He also gratefully acknowledge that much of our own research work on variational theory was supported by the U.S. Air Force Office of Scientific Research. He are indebted to Mr. Ming-Goei Sheu for help in proofreading. Finally, we wish to express thanks to Mrs. Marilyn Gude for her excellent and pains taking job of typing the manuscript. J. T. ODEN J. N. REDDY Table of Contents PREFACE 1. INTRODUCTION 1.1 The Role of Variational Theory in Mechanics. 1 1.2 Some Historical Comments ......... . 2 1.3 Plan of Study ............... . 5 7 2. MATHEMATICAL FOUNDATIONS OF CLASSICAL VARIATIONAL THEORY 7 2.1 Introduction . . . . . . . .

Book Stochastic Finite Elements  A Spectral Approach

Download or read book Stochastic Finite Elements A Spectral Approach written by Roger G. Ghanem and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph considers engineering systems with random parame ters. Its context, format, and timing are correlated with the intention of accelerating the evolution of the challenging field of Stochastic Finite Elements. The random system parameters are modeled as second order stochastic processes defined by their mean and covari ance functions. Relying on the spectral properties of the covariance function, the Karhunen-Loeve expansion is used' to represent these processes in terms of a countable set of un correlated random vari ables. Thus, the problem is cast in a finite dimensional setting. Then, various spectral approximations for the stochastic response of the system are obtained based on different criteria. Implementing the concept of Generalized Inverse as defined by the Neumann Ex pansion, leads to an explicit expression for the response process as a multivariate polynomial functional of a set of un correlated random variables. Alternatively, the solution process is treated as an element in the Hilbert space of random functions, in which a spectral repre sentation in terms of the Polynomial Chaoses is identified. In this context, the solution process is approximated by its projection onto a finite subspace spanned by these polynomials.

Book Mathematical Reviews

Download or read book Mathematical Reviews written by and published by . This book was released on 2004 with total page 1524 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applied Functional Analysis

Download or read book Applied Functional Analysis written by J. Tinsley Oden and published by CRC Press. This book was released on 2017-12-01 with total page 610 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Functional Analysis, Third Edition provides a solid mathematical foundation for the subject. It motivates students to study functional analysis by providing many contemporary applications and examples drawn from mechanics and science. This well-received textbook starts with a thorough introduction to modern mathematics before continuing with detailed coverage of linear algebra, Lebesque measure and integration theory, plus topology with metric spaces. The final two chapters provides readers with an in-depth look at the theory of Banach and Hilbert spaces before concluding with a brief introduction to Spectral Theory. The Third Edition is more accessible and promotes interest and motivation among students to prepare them for studying the mathematical aspects of numerical analysis and the mathematical theory of finite elements.

Book Advances in Continuum Mechanics

Download or read book Advances in Continuum Mechanics written by Otto Brüller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recognized authors contributed to this collection of original papers from all fields of research in continuum mechanics. Special emphasis is given to time dependent and independent permanent deformations, damage and fracture. Part of the contributions is dedicated to current efforts in describing material behavior with regard to, e.g., anisotropy, thermal effects, softening, ductile and brittle fracture, porosity and granular structure. Another part deals with numerical aspects arising from the implementation of material laws in the calculations of forming processes, soil mechanics and structural mechanics. Applications of theory and numerical methods belong to the following areas: Comparison with experimental results from material testing, metal forming under thermal and dynamic conditions, failure by damage, fracture and localized deformation modes. The variety of treated topics provides a survery of the actual research in these fields; therefore, the book is addressed to those interested in special problems of continuum mechanics as well as to those interested in a general knowledge.

Book A Posteriori Error Estimation in Finite Element Analysis

Download or read book A Posteriori Error Estimation in Finite Element Analysis written by Mark Ainsworth and published by John Wiley & Sons. This book was released on 2011-09-28 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, one-stop reference-complete with applications This volume presents the most up-to-date information available on aposteriori error estimation for finite element approximation inmechanics and mathematics. It emphasizes methods for ellipticboundary value problems and includes applications to incompressibleflow and nonlinear problems. Recent years have seen an explosion in the study of a posteriorierror estimators due to their remarkable influence on improvingboth accuracy and reliability in scientific computing. In an effortto provide an accessible source, the authors have sought to presentkey ideas and common principles on a sound mathematicalfooting. Topics covered in this timely reference include: * Implicit and explicit a posteriori error estimators * Recovery-based error estimators * Estimators, indicators, and hierarchic bases * The equilibrated residual method * Methodology for the comparison of estimators * Estimation of errors in quantities of interest A Posteriori Error Estimation in Finite Element Analysis is a lucidand convenient resource for researchers in almost any field offinite element methods, and for applied mathematicians andengineers who have an interest in error estimation and/or finiteelements.

Book Inelasticity of Materials

    Book Details:
  • Author : Arun Ramaswamy Srinivasa
  • Publisher : World Scientific Publishing Company
  • Release : 2009
  • ISBN :
  • Pages : 580 pages

Download or read book Inelasticity of Materials written by Arun Ramaswamy Srinivasa and published by World Scientific Publishing Company. This book was released on 2009 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the advent of a host of new materials ranging from shape memory alloys to biomaterials to multiphase alloys, acquiring the capacity to model inelastic behavior and to choose the right model in a commercial analysis software has become a pressing need for practicing engineers. Even with the traditional materials, there is a continued emphasis on optimizing and extending their full range of capability in the applications. This textbook builds upon the existing knowledge of elasticity and thermodynamics, and allows the reader to gain confidence in extending one's skills in understanding and analyzing problems in inelasticity. By reading this textbook and working through the assigned exercises, the reader will gain a level of comfort and competence in developing and using inelasticity models. Thus, the book serves as a valuable book for practicing engineers and senior-level undergraduate/graduate-level students in the mechanical, civil, aeronautical, metallurgical and other disciplines. The book is written in three parts. Part 1 is primarily focused on lumped parameter models and simple structural elements such as trusses and beams. This is suitable for an advanced undergraduate class with just a strength of materials background. Part II is focused on small deformation multi-dimensional inelasticity and is suitable for a beginning graduate class. Sufficient material is included on how to numerically implement an inelastic model and solve either using a simple stress function type of approach or using commercial software. Case studies are included as examples. There is also an extensive discussion of thermodynamics in the context of small deformations. Part III focuses on more advanced situations such as finite deformation inelasticity, thermodynamical ideas and crystal plasticity. More advanced case studies are included in this part. bull; This textbook takes a new, task- or scenario-based approach to teaching and learning inelasticity. The book is written in an active learning style that appeals to engineers and students who wish to design or analyze structures and components that are subject to inelasticity. bull; The book incorporates thermodynamical considerations into the modeling right from an early stage. Extensive discussions are provided throughout the book on the thermodynamical underpinnings of the models. bull; This textbook is the first to make extensive use of MATLAB to implement many inelasticity models. It includes the use of concepts such as Airy stress functions to solve plane problems for inelastic materials. The MATLAB codes are listed in the appendix for one to modify with their own models and requirements. bull; Step-by-step procedures for formulations and calculations are provided for the reader to readily adapt to the inelastic problems that he or she attempts to solve. bull; A large number of problems, exercises and projects for one to teach or learn from are included. These can be assigned as homework, in-class exercises or projects. bull; The book is written in a modular fashion, which provides adequate flexibility for adaptation in classes that cater to different audiences such as senior-level students, graduate students, research scholars, and practicing engineers.

Book Computational Stochastic Mechanics

Download or read book Computational Stochastic Mechanics written by P.D. Spanos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over a period of several years the field of probabilistic mechanics and com putational mechanics have progressed vigorously, but independently. With the advent of powerful computational hardware and the development of novel mechanical techniques, the field of stochastic mechanics has progressed in such a manner that the inherent uncertainty of quite complicated systems can be addressed. The first International Conference on Computational Stochastic Mechanics was convened in Corfu in September 1991 in an ef fort to provide a forum for the exchanging of ideas on the current status of computational methods as applied to stochastic mechanics and for identi fying needs for further research. The Conference covered both theoretical techniques and practical applications. The Conference also celebrated the 60th anniversary of the birthday of Dr. Masanobu Shinozuka, the Sollenberger Professor of Civil Engineering at Princeton University, whose work has contributed in such a great measure to the development of Computational Stochastic Mechanics. A brief sum mary of his career and achievements are given in the Dedication. This book comprises some of the papers presented at the meeting and cov ers sections on Theoretical Reliability Analysis; Damage Analysis; Applied Reliability Analysis; Theoretical Random Vibrations; Stochastic Finite Ele ment Concept; Fatigue and Fracture; Monte Carlo Simulations; Earthquake Engineering Applications; Materials; Applied Random Vibrations; Applied Stochastic Finite Element Analysis, and Flow Related Applications and Chaotic Dynamics. The Editors hope that the book will be a valuable contribution to the grow ing literature covering the field of Computational Stochastic Mechanics.

Book An Introduction to the Mathematical Theory of Finite Elements

Download or read book An Introduction to the Mathematical Theory of Finite Elements written by J. T. Oden and published by Courier Corporation. This book was released on 2012-05-23 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and courses for students with diverse educational backgrounds. Their effective presentation begins with introductory accounts of the theory of distributions, Sobolev spaces, intermediate spaces and duality, the theory of elliptic equations, and variational boundary value problems. The second half of the text explores the theory of finite element interpolation, finite element methods for elliptic equations, and finite element methods for initial boundary value problems. Detailed proofs of the major theorems appear throughout the text, in addition to numerous examples.