EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Pair Correlation Effects in Many Body Systems

Download or read book Pair Correlation Effects in Many Body Systems written by Kristian Blom and published by . This book was released on 2023 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The laws of nature encompass the small, the large, the few, and the many. In this book, we are concerned with classical (i.e., not quantum) many-body systems, which refers to any microscopic or macroscopic system that contains a large number of interacting entities. The nearest-neighbor Ising model, originally developed in 1920 by Wilhelm Lenz, forms a cornerstone in our theoretical understanding of collective effects in classical many-body systems and is to date a paradigm for statistical physics. Despite its elegant and simplistic description, exact analytical results in dimensions equal and larger than two are difficult to obtain. Therefore, much work has been done to construct methods that allow for approximate, yet accurate, analytical solutions. One of these methods is the Bethe-Guggenheim approximation, originally developed independently by Hans Bethe and Edward Guggenheim in 1935. This approximation goes beyond the well-known mean field approximation and explicitly accounts for pair correlations between the spins in the Ising model. In this book, we embark on a journey to exploit the full capacity of the Bethe-Guggenheim approximation, in non-uniform and non-equilibrium settings. Throughout we unveil the non-trivial and a priori non-intuitive effects of pair correlations in the classical nearest-neighbor Ising model, which are taken into account in the Bethe-Guggenheim approximation and neglected in the mean field approximation.

Book Pair Correlation Effects in Many Body Systems

Download or read book Pair Correlation Effects in Many Body Systems written by Kristian Blom and published by Springer Nature. This book was released on 2023-05-26 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: The laws of nature encompass the small, the large, the few, and the many. In this book, we are concerned with classical (i.e., not quantum) many-body systems, which refers to any microscopic or macroscopic system that contains a large number of interacting entities. The nearest-neighbor Ising model, originally developed in 1920 by Wilhelm Lenz, forms a cornerstone in our theoretical understanding of collective effects in classical many-body systems and is to date a paradigm in statistical physics. Despite its elegant and simplistic description, exact analytical results in dimensions equal and larger than two are difficult to obtain. Therefore, much work has been done to construct methods that allow for approximate, yet accurate, analytical solutions. One of these methods is the Bethe-Guggenheim approximation, originally developed independently by Hans Bethe and Edward Guggenheim in 1935. This approximation goes beyond the well-known mean field approximation and explicitly accounts for pair correlations between the spins in the Ising model. In this book, we embark on a journey to exploit the full capacity of the Bethe-Guggenheim approximation, in non-uniform and non-equilibrium settings. Throughout we unveil the non-trivial and a priori non-intuitive effects of pair correlations in the classical nearest-neighbor Ising model, which are taken into account in the Bethe-Guggenheim approximation and neglected in the mean field approximation.

Book Nuclear Science Abstracts

Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1974 with total page 1296 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nuclear Science Abstracts

Download or read book Nuclear Science Abstracts written by and published by . This book was released on 1972 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Relativistic Many Body Theory

    Book Details:
  • Author : Ingvar Lindgren
  • Publisher : Springer Science & Business Media
  • Release : 2011-04-30
  • ISBN : 1441983090
  • Pages : 372 pages

Download or read book Relativistic Many Body Theory written by Ingvar Lindgren and published by Springer Science & Business Media. This book was released on 2011-04-30 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a comprehensive account of relativistic many-body perturbation theory, based upon field theory. After some introductory chapters about time-independent and time dependent many-body perturbation theory (MBPT), the standard techniques of S-matrix and Green’s functions are reviewed. Next, the newly introduced covariant-evolution-operator method is described, which can be used, like the S-matrix method, for calculations in quantum electrodynamics (QED). Unlike the S-matrix method, this has a structure that is similar to that of MBPT and therefore can serve as basis for a unified theory. Such an approach is developed in the final chapters, and its equivalence to the Bethe-Salpeter equation is demonstrated. Possible applications are discussed and numerical illustrations given.

Book Local Structure from Diffraction

Download or read book Local Structure from Diffraction written by S.J.L. Billinge and published by Springer Science & Business Media. This book was released on 2006-02-04 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: This series of books, which is published at the rate of about one per year, addresses fundamental problems in materials science. The contents cover a broad range of topics from small clusters of atoms to engineering materials and involve chemistry, physics, materials science and engineering, with length scales ranging from Ångstroms up to millimeters. The emphasis is on basic science rather than on applications. Each book focuses on a single area of current interest and brings together leading experts to give an up-to-date discussion of their work and the work of others. Each article contains enough references that the interested reader can access the relevant literature. Thanks are given to the Center for Fundamental Materials Research at Michigan State University for supporting this series. M.F. Thorpe, Series Editor E-mail: thorpe @ pa.msu.edu East Lansing, Michigan PREFACE One of the most challenging problems in the study of structure is to characterize the atomic short-range order in materials. Long-range order can be determined with a high degree of accuracy by analyzing Bragg peak positions and intensities in data from single crystals or powders. However, information about short-range order is contained in the diffuse scattering intensity. This is difficult to analyze because it is low in absolute intensity (though the integrated intensity may be significant) and widely spread in reciprocal space.

Book Methods of Electronic Structure Theory

Download or read book Methods of Electronic Structure Theory written by Henry F. Schaefer and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: These two volumes deal with the quantum theory of the electronic structure of molecules. Implicit in the term ab initio is the notion that approximate solutions of Schrödinger's equation are sought "from the beginning," i. e. , without recourse to experimental data. From a more pragmatic viewpoint, the distin guishing feature of ab initio theory is usually the fact that no approximations are involved in the evaluation of the required molecular integrals. Consistent with current activity in the field, the first of these two volumes contains chapters dealing with methods per se, while the second concerns the application of these methods to problems of chemical interest. In asense, the motivation for these volumes has been the spectacular recent success of ab initio theory in resolving important chemical questions. However, these applications have only become possible through the less visible but equally important efforts of those develop ing new theoretical and computational methods and models. Henry F Schaefer Vll Contents Contents of Volume 4 XIX Chapter 1. Gaussian Basis Sets for Molecular Calculations Thom. H. Dunning, Ir. and P. Ieffrey Hay 1. Introduction . . . . . . . . . . . . . . . . 1 1. 1. Slater Functions and the Hydrogen Moleeule 1 1. 2. Gaussian Functions and the Hydrogen Atom 3 2. Hartree-Fock Calculations on the First Row Atoms 5 2. 1. Valence States of the First Row Atoms 6 7 2. 2. Rydberg States of the First Row Atoms 9 2. 3.

Book Dynamics  Models and Kinetic Methods for Non equilibrium Many Body Systems

Download or read book Dynamics Models and Kinetic Methods for Non equilibrium Many Body Systems written by John Karkheck and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have witnessed a resurgence in the kinetic approach to dynamic many-body problems. Modern kinetic theory offers a unifying theoretical framework within which a great variety of seemingly unrelated systems can be explored in a coherent way. Kinetic methods are currently being applied in such areas as the dynamics of colloidal suspensions, granular material flow, electron transport in mesoscopic systems, the calculation of Lyapunov exponents and other properties of classical many-body systems characterised by chaotic behaviour. The present work focuses on Brownian motion, dynamical systems, granular flows, and quantum kinetic theory.

Book Brillouin Wigner Methods for Many Body Systems

Download or read book Brillouin Wigner Methods for Many Body Systems written by Stephen Wilson and published by Springer Science & Business Media. This book was released on 2009-12-01 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brillouin-Wigner Methods for Many-Body Systems gives an introduction to many-body methods in electronic structure theory for the graduate student and post-doctoral researcher. It provides researchers in many-body physics and theoretical chemistry with an account of Brillouin-Wigner methodology as it has been developed in recent years to handle the multireference correlation problem. Moreover, the frontiers of this research field are defined. This volume is of interest to atomic and molecular physicists, physical chemists and chemical physicists, quantum chemists and condensed matter theorists, computational chemists and applied mathematicians.

Book Quantum Kinetic Theory

    Book Details:
  • Author : Michael Bonitz
  • Publisher : Springer
  • Release : 2015-11-20
  • ISBN : 3319241214
  • Pages : 412 pages

Download or read book Quantum Kinetic Theory written by Michael Bonitz and published by Springer. This book was released on 2015-11-20 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.

Book Quantum Mechanics

    Book Details:
  • Author : Walter Greiner
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 3642588476
  • Pages : 386 pages

Download or read book Quantum Mechanics written by Walter Greiner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supplementing "Quantum Mechanics. An Introduction" and "Quantum Mechanics. Symmetries", this book covers an important additional course on quantum mechanics, including an introduction to quantum statistics, the structure of atoms and molecules, and the Schrödinger wave equation. 72 fully worked examples and problems consolidate the material.

Book Bose Einstein Condensation in Atomic Gases

Download or read book Bose Einstein Condensation in Atomic Gases written by Società italiana di fisica and published by IOS Press. This book was released on 1999 with total page 664 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although first proposed by Einstein in 1924, Bose-Einstein condensation (BEC) in a gas was not achieved until 1995 when, using a combination of laser cooling and trapping, and magnetic trapping and evaporation, it was first observed in rubidium and then in lithium and sodium, cooled down to extremely low temperatures. This book brought together many leaders in both theory and experiment on Bose-Einstein condensation in gases. Their lectures provided a detailed coverage of the experimental techniques for the creation and study of BEC, as well as the theoretical foundation for understanding the properties of this novel system. This volume provides the first systematic review of the field and the many developments that have taken place in the past three years.

Book Condensazione Di Bose Einstein Nei Gas Atomici

Download or read book Condensazione Di Bose Einstein Nei Gas Atomici written by M. Inguscio and published by IOS Press. This book was released on 1999 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although first proposed by Einstein in 1924, Bose-Einstein condensation (BEC) in a gas was not achieved until 1995 when, using a combination of laser cooling and trapping, and magnetic trapping and evaporation, it was first observed in rubidium and then in lithium and sodium, cooled down to extremely low temperatures. This book brought together many leaders in both theory and experiment on Bose-Einstein condensation in gases. Their lectures provided a detailed coverage of the experimental techniques for the creation and study of BEC, as well as the theoretical foundation for understanding the properties of this novel system. This volume provides the first systematic review of the field and the many developments that have taken place in the past three years.

Book Modern Topics In Electron Scattering

Download or read book Modern Topics In Electron Scattering written by Bernard Frois and published by World Scientific. This book was released on 1991-08-16 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the considerable progress recently achieved in the understanding of nucleon and nuclear structure by using high energy electrons as a probe. A collection of papers discusses in detail the new frontiers of this field. Experimental and theoretical articles cover topics such as the structure of the nucleon, nucleon distributions, many-body correlations, non-nucleonic degrees of freedom and few-body systems. This book is an up-to-date introduction to the research planned with continuous beam electron accelerators.

Book Computational Chemistry  Reviews Of Current Trends  Vol  1

Download or read book Computational Chemistry Reviews Of Current Trends Vol 1 written by Nicholas Bodor and published by World Scientific. This book was released on 1996-02-16 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of recent progress in computational techniques as well as examples of the application of existing computational methods in different areas of chemistry, physics, and biochemistry. Introductory chapters cover a broad range of fundamental topics, including: state-of-the-art basis set expansion methods for computing atomic and molecular electronic structures based on the use of relativistic quantum mechanics; the most recent developments in Hartree-Fock methods, particularly in techniques suited for very large systems; the current analysis of the solute-solvent free energy of interaction and the physical bases used to evaluate the electrostatic, cavitation, and dispersion terms; an introduction to the additive fuzzy electron density fragmentation scheme within various ab initio Hartree-Fock quantum-chemical computational schemes, which has provided the means for generating representative molecular fragment densities characteristic to their local environment within a molecule. This book also features a review of recent ab initio calculations on the structure and interactions of DNA bases, a chapter on computational approaches to the design of safer drugs and their molecular properties, and a systematic conceptual study on a route which allows one to stuff fullerenes.

Book Computational Chemistry

    Book Details:
  • Author : Jerzy Leszczynski
  • Publisher : World Scientific
  • Release : 1996
  • ISBN : 9789810225728
  • Pages : 288 pages

Download or read book Computational Chemistry written by Jerzy Leszczynski and published by World Scientific. This book was released on 1996 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an overview of recent progress in computational techniques as well as examples of the application of existing computational methods in different areas of chemistry, physics, and biochemistry. Introductory chapters cover a broad range of fundamental topics, including: state-of-the-art basis set expansion methods for computing atomic and molecular electronic structures based on the use of relativistic quantum mechanics; the most recent developments in Hartree-Fock methods, particularly in techniques suited for very large systems; the current analysis of the solute-solvent free energy of interaction and the physical bases used to evaluate the electrostatic, cavitation, and dispersion terms; an introduction to the additive fuzzy electron density fragmentation scheme within various ab initio Hartree-Fock quantum-chemical computational schemes, which has provided the means for generating representative molecular fragment densities characteristic to their local environment within a molecule. This book also features a review of recent ab initio calculations on the structure and interactions of DNA bases, a chapter on computational approaches to the design of safer drugs and their molecular properties, and a systematic conceptual study on a route which allows one to stuff fullerenes.

Book Theoretical Chemistry and Physics of Heavy and Superheavy Elements

Download or read book Theoretical Chemistry and Physics of Heavy and Superheavy Elements written by U. Kaldor and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics provides the fundamental theoretical apparatus for describing the structure and properties of atoms and molecules in terms of the behaviour of their fundamental components, electrons and nudeL For heavy atoms and molecules containing them, the electrons can move at speeds which represent a substantial fraction of the speed of light, and thus relativity must be taken into account. Relativistic quantum mechanics therefore provides the basic formalism for calculating the properties of heavy-atom systems. The purpose of this book is to provide a detailed description of the application of relativistic quantum mechanics to the many-body prob lem in the theoretical chemistry and physics of heavy and superheavy elements. Recent years have witnessed a continued and growing interest in relativistic quantum chemical methods and the associated computa tional algorithms which facilitate their application. This interest is fu elled by the need to develop robust, yet efficient theoretical approaches, together with efficient algorithms, which can be applied to atoms in the lower part of the Periodic Table and, more particularly, molecules and molecular entities containing such atoms. Such relativistic theories and computational algorithms are an essential ingredient for the description of heavy element chemistry, becoming even more important in the case of superheavy elements. They are destined to become an indispensable tool in the quantum chemist's armoury. Indeed, since relativity influences the structure of every atom in the Periodic Table, relativistic molecular structure methods may replace in many applications the non-relativistic techniques widely used in contemporary research.