EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Overview of Computer Aided Engineering of Batteries and Introduction to Multi Scale  Multi Dimensional Modeling of Li Ion Batteries  Presentation

Download or read book Overview of Computer Aided Engineering of Batteries and Introduction to Multi Scale Multi Dimensional Modeling of Li Ion Batteries Presentation written by and published by . This book was released on 2012 with total page 37 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2012 Annual Merit Review presentation gives an overview of the Computer-Aided Engineering of Batteries (CAEBAT) project and introduces the Multi-Scale, Multi-Dimensional model for modeling lithium-ion batteries for electric vehicles.

Book Overview of Computer Aided Engineering of Batteries and Introduction to Multi Scale  Multi Dimensional Modeling of Li Ion Batteries  Presentation

Download or read book Overview of Computer Aided Engineering of Batteries and Introduction to Multi Scale Multi Dimensional Modeling of Li Ion Batteries Presentation written by and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2012 Annual Merit Review presentation gives an overview of the Computer-Aided Engineering of Batteries (CAEBAT) project and introduces the Multi-Scale, Multi-Dimensional model for modeling lithium-ion batteries for electric vehicles.

Book Overview of computer aided engineering of batteries and introduction to multi scale  multi dimensional modeling of Li lon batteries

Download or read book Overview of computer aided engineering of batteries and introduction to multi scale multi dimensional modeling of Li lon batteries written by and published by . This book was released on 2012 with total page 37 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Accelerating Development of EV Batteries Through Computer Aided Engineering  Presentation

Download or read book Accelerating Development of EV Batteries Through Computer Aided Engineering Presentation written by and published by . This book was released on 2012 with total page 37 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Department of Energy's Vehicle Technology Program has launched the Computer-Aided Engineering for Automotive Batteries (CAEBAT) project to work with national labs, industry and software venders to develop sophisticated software. As coordinator, NREL has teamed with a number of companies to help improve and accelerate battery design and production. This presentation provides an overview of CAEBAT, including its predictive computer simulation of Li-ion batteries known as the Multi-Scale Multi-Dimensional (MSMD) model framework. MSMD's modular, flexible architecture connects the physics of battery charge/discharge processes, thermal control, safety and reliability in a computationally efficient manner. This allows independent development of submodels at the cell and pack levels.

Book Multi Scale Multi Dimensional Li Ion Battery Model for Better Design and Management  Presentation

Download or read book Multi Scale Multi Dimensional Li Ion Battery Model for Better Design and Management Presentation written by and published by . This book was released on 2008 with total page 29 pages. Available in PDF, EPUB and Kindle. Book excerpt: The developed model used is to provide a better understanding and help answer engineering questions about improving the design, operational strategy, management, and safety of cells.

Book Multi Scale Multi Dimensional Li Ion Battery Model for Better Design and Management  Presentation

Download or read book Multi Scale Multi Dimensional Li Ion Battery Model for Better Design and Management Presentation written by and published by . This book was released on 2008 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The developed model used is to provide a better understanding and help answer engineering questions about improving the design, operational strategy, management, and safety of cells.

Book Accelerating Development of EV Batteries Through Computer Aided Engineering  Presentation

Download or read book Accelerating Development of EV Batteries Through Computer Aided Engineering Presentation written by and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Department of Energy's Vehicle Technology Program has launched the Computer-Aided Engineering for Automotive Batteries (CAEBAT) project to work with national labs, industry and software venders to develop sophisticated software. As coordinator, NREL has teamed with a number of companies to help improve and accelerate battery design and production. This presentation provides an overview ofCAEBAT, including its predictive computer simulation of Li-ion batteries known as the Multi-Scale Multi-Dimensional (MSMD) model framework. MSMD's modular, flexible architecture connects the physics of battery charge/discharge processes, thermal control, safety and reliability in a computationally efficient manner. This allows independent development of submodels at the cell and pack levels.

Book Computer Aided Engineering of Batteries

Download or read book Computer Aided Engineering of Batteries written by Shriram Santhanagopalan and published by Springer Nature. This book was released on 2023-03-14 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume, with contributions from the Computer Aided Engineering for Batteries (CAEBAT) program, provides firsthand insights into nuances of implementing battery models in actual geometries. It discusses practical examples and gaps in our understanding, while reviewing in depth the theoretical background and algorithms. Over the last ten years, several world-class academics, automotive original equipment manufacturers (OEMs), battery cell manufacturers and software developers worked together under an effort initiated by the U.S. Department of Energy to develop mature, validated modeling tools to simulate design, performance, safety and life of automotive batteries. Until recently, battery modeling was a niche focus area with a relatively small number of experts. This book opens up the research topic for a broader audience from industry and academia alike. It is a valuable resource for anyone who works on battery engineering but has limited hands-on experience with coding.

Book Multiscale Modeling of Degradation in Lithium ion Batteries

Download or read book Multiscale Modeling of Degradation in Lithium ion Batteries written by Fridolin Röder and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive methodology for multiscale simulation of degradation in lithium-ion batteries. The work helps to understand battery degradation processes by revealing complex multiscale effects, which cannot be taken into account by single-scale models. A novel numerical method is presented, which dynamically couples molecular models based on kinetic Monte Carlo method with macroscopic models. Moreover, the work provides mathematical models of degradation on various length scales, e.g. heterogeneous side reactions on molecular scale and the restructuring of particle size distributions on electrode scale. Instead of describing processes separately, the multiscale methodology systematically analyzes interaction of degradation processes and cell operation. The presented methodology is certainly applicable to other electrochemical systems with considerable multi-scale nature.

Book Design and Analysis of Large Lithium Ion Battery Systems

Download or read book Design and Analysis of Large Lithium Ion Battery Systems written by Shriram Santhanagopalan and published by Artech House. This book was released on 2014-12-01 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new resource provides you with an introduction to battery design and test considerations for large-scale automotive, aerospace, and grid applications. It details the logistics of designing a professional, large, Lithium-ion battery pack, primarily for the automotive industry, but also for non-automotive applications. Topics such as thermal management for such high-energy and high-power units are covered extensively, including detailed design examples. Every aspect of battery design and analysis is presented from a hands-on perspective. The authors work extensively with engineers in the field and this book is a direct response to frequently-received queries. With the authors’ unique expertise in areas such as battery thermal evaluation and design, physics-based modeling, and life and reliability assessment and prediction, this book is sure to provide you with essential, practical information on understanding, designing, and building large format Lithium-ion battery management systems.

Book Modern Battery Engineering  A Comprehensive Introduction

Download or read book Modern Battery Engineering A Comprehensive Introduction written by Birke Peter Kai and published by World Scientific. This book was released on 2019-04-08 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This richly illustrated book written by Professor Kai Peter Birke and several co-authors addresses both scientific and engineering aspects of modern batteries in a unique way. Emphasizing the engineering part of batteries, the book acts as a compass towards next generation batteries for automotive and stationary applications. The book provides distinguished answers to still open questions on how future batteries look like.Modern Battery Engineering explains why and how batteries have to be designed for successful commercialization in e-mobility and stationary applications. The book will help readers understand the principle issues of battery designs, paving the way for engineers to avoid wrong paths and settle on appropriate cell technologies for next generation batteries. This book is ideal for training courses for readers interested in the field of modern batteries.

Book Advances in Lithium Ion Batteries for Electric Vehicles

Download or read book Advances in Lithium Ion Batteries for Electric Vehicles written by Haifeng Dai and published by Elsevier. This book was released on 2024-02-26 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Lithium-Ion Batteries for Electric Vehicles: Degradation Mechanism, Health Estimation, and Lifetime Prediction examines the electrochemical nature of lithium-ion batteries, including battery degradation mechanisms and how to manage the battery state of health (SOH) to meet the demand for sustainable development of electric vehicles. With extensive case studies, methods and applications, the book provides practical, step-by-step guidance on battery tests, degradation mechanisms, and modeling and management strategies. The book begins with an overview of Li-ion battery aging and battery aging tests before discussing battery degradation mechanisms and methods for analysis. Further methods are then presented for battery state of health estimation and battery lifetime prediction, providing a range of case studies and techniques. The book concludes with a thorough examination of lifetime management strategies for electric vehicles, making it an essential resource for students, researchers, and engineers needing a range of approaches to tackle battery degradation in electric vehicles. Evaluates the cause of battery degradation from the material level to the cell level Explains key battery basic lifetime test methods and strategies Presents advanced technologies of battery state of health estimation

Book Lithium Batteries

    Book Details:
  • Author : Gholam-Abbas Nazri
  • Publisher : Springer Science & Business Media
  • Release : 2009-01-14
  • ISBN : 0387926747
  • Pages : 725 pages

Download or read book Lithium Batteries written by Gholam-Abbas Nazri and published by Springer Science & Business Media. This book was released on 2009-01-14 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium Batteries: Science and Technology is an up-to-date and comprehensive compendium on advanced power sources and energy related topics. Each chapter is a detailed and thorough treatment of its subject. The volume includes several tutorials and contributes to an understanding of the many fields that impact the development of lithium batteries. Recent advances on various components are included and numerous examples of innovation are presented. Extensive references are given at the end of each chapter. All contributors are internationally recognized experts in their respective specialty. The fundamental knowledge necessary for designing new battery materials with desired physical and chemical properties including structural, electronic and reactivity are discussed. The molecular engineering of battery materials is treated by the most advanced theoretical and experimental methods.

Book Multi scale Simulation and Experimental Study of High Voltage High Capacity Cathode Materials for Lithium Ion Battery

Download or read book Multi scale Simulation and Experimental Study of High Voltage High Capacity Cathode Materials for Lithium Ion Battery written by Fantai Kong and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented in this dissertation is combined research of multi-scale simulation and experimental study of high voltage high capacity cathode materials for Lithium ion batteries. The materials under study are Li-Mn-rich layered oxides and Ni-rich layered oxides, which are widely regarded as the next generation cathode materials. However, they both face different challenges towards final commercialization. Many of these challenges have not been well understood, resulting in the difficulties of rationally optimizing battery performances. Therefore, we applied the ab initio method (density functional theory) to understand the underlying mechanisms that determine various important properties of these oxides, including redox potential, structural stability, ionic conductivity, electronic conductivity, cation mixing, etc. Based on these understandings, we proposed some rationalized optimizing strategies. Some of the strategies have also been experimentally validated by chemical synthesis and electrochemical performance testing via assembling coin cell type devices. Furthermore, as a way of extending the simulation limit (time scale and space scale) of the ab initio method, we have developed a new interatomic potential method by introducing dynamic charge transfer potential into the modified embedding atomic method (CT-MEAM). The potential method has been successfully applied to Li-Mn-O, Mn-O and Li-Ni-O systems with validated high accuracy in reproducing and predicting redox potentials, Li dynamics, surface effects, phase stabilities, structural parameters, phase diagrams, etc. These works could not only stimulate the large scale simulation of cathode materials for Li ion batteries, but also other materials involving strong charge transfer effects and electrochemical reactions.

Book Fundamentals and Applications of Lithium ion Batteries in Electric Drive Vehicles

Download or read book Fundamentals and Applications of Lithium ion Batteries in Electric Drive Vehicles written by Jiuchun Jiang and published by John Wiley & Sons. This book was released on 2015-05-18 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: A theoretical and technical guide to the electric vehicle lithium-ion battery management system Covers the timely topic of battery management systems for lithium batteries. After introducing the problem and basic background theory, it discusses battery modeling and state estimation. In addition to theoretical modeling it also contains practical information on charging and discharging control technology, cell equalisation and application to electric vehicles, and a discussion of the key technologies and research methods of the lithium-ion power battery management system. The author systematically expounds the theory knowledge included in the lithium-ion battery management systems and its practical application in electric vehicles, describing the theoretical connotation and practical application of the battery management systems. Selected graphics in the book are directly derived from the real vehicle tests. Through comparative analysis of the different system structures and different graphic symbols, related concepts are clear and the understanding of the battery management systems is enhanced. Contents include: key technologies and the difficulty point of vehicle power battery management system; lithium-ion battery performance modeling and simulation; the estimation theory and methods of the lithium-ion battery state of charge, state of energy, state of health and peak power; lithium-ion battery charge and discharge control technology; consistent evaluation and equalization techniques of the battery pack; battery management system design and application in electric vehicles. A theoretical and technical guide to the electric vehicle lithium-ion battery management system Using simulation technology, schematic diagrams and case studies, the basic concepts are described clearly and offer detailed analysis of battery charge and discharge control principles Equips the reader with the understanding and concept of the power battery, providing a clear cognition of the application and management of lithium ion batteries in electric vehicles Arms audiences with lots of case studies Essential reading for Researchers and professionals working in energy technologies, utility planners and system engineers.

Book Model Order Reduction of Multi dimensional Partial Differential Equations for Electrochemical thermal Modeling of Large format Lithium ion Batteries

Download or read book Model Order Reduction of Multi dimensional Partial Differential Equations for Electrochemical thermal Modeling of Large format Lithium ion Batteries written by Guodong Fan and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium ion batteries are considered the state of the art for energy storage in electric and hybrid vehicles. However, there are still several major challenges, such as battery safety, durability and cost, limiting the widespread application of Li-ion batteries in electrified vehicles. Understanding and predicting the chemical and physical processes in Li-ion cells is possible through multi-scale characterization methods. However, ``in-situ" quantification of such processes on a vehicle is not yet achievable due to the absence of direct measurements. Hence, high-fidelity, first-principles models are an essential investigation tool for the prediction of the battery performance and life. While such multi-scale, multi-dimensional first-principles models allow one to characterize the distribution of electrochemical and thermal properties within the cell, they require significant calibration effort and computation time, due to the presence of large scale coupled Partial Differential Equations (PDEs) and nonlinear algebraic equations, ultimately preventing their application to estimation and control algorithm design and verification. This dissertation presents the reduced order electrochemical-thermal models derived from first principles and suitable for real-time simulation, estimation and control design, through the systematic use of projection methods to achieve direct Model Order Reduction (MOR) from linear and nonlinear parabolic PDEs to low-order Ordinary Differential Equations (ODEs). The proposed methodology is applied to an electrochemical-thermal model for the simulation of large-scale Lithium ion battery cells. The resulting reduced-order multi-scale, multi-dimensional model is validated against numerical solutions and experimental data at various input current conditions. The physics-based, ultra-fast modeling tools developed within this research will enable accurate prediction of the electrochemical and thermal distributions within the battery cells, supporting simulation and analysis of performance and remaining usable life of the Li-ion batteries in electrified vehicles.