EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Overconvergence in Complex Approximation

Download or read book Overconvergence in Complex Approximation written by Sorin G. Gal and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph deals with the quantitative overconvergence phenomenon in complex approximation by various operators. The book is divided into three chapters. First, the results for the Schurer-Faber operator, Beta operators of first kind, Bernstein-Durrmeyer-type operators and Lorentz operator are presented. The main focus is on results for several q-Bernstein kind of operators with q > 1, when the geometric order of approximation 1/qn is obtained not only in complex compact disks but also in quaternion compact disks and in other compact subsets of the complex plane. The focus then shifts to quantitative overconvergence and convolution overconvergence results for the complex potentials generated by the Beta and Gamma Euler's functions. Finally quantitative overconvergence results for the most classical orthogonal expansions (of Chebyshev, Legendre, Hermite, Laguerre and Gegenbauer kinds) attached to vector-valued functions are presented. Each chapter concludes with a notes and open problems section, thus providing stimulation for further research. An extensive bibliography and index complete the text. This book is suitable for researchers and graduate students working in complex approximation and its applications, mathematical analysis and numerical analysis.

Book Walsh Equiconvergence of Complex Interpolating Polynomials

Download or read book Walsh Equiconvergence of Complex Interpolating Polynomials written by Amnon Jakimovski and published by Springer Science & Business Media. This book was released on 2007-05-16 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of the various old and new results, centered around the following simple and beautiful observation of J.L. Walsh - If a function is analytic in a finite disc, and not in a larger disc, then the difference between the Lagrange interpolant of the function, at the roots of unity, and the partial sums of the Taylor series, about the origin, tends to zero in a larger disc than the radius of convergence of the Taylor series, while each of these operators converges only in the original disc. This book will be particularly useful for researchers in approximation and interpolation theory.

Book Mathematical Analysis  Approximation Theory and Their Applications

Download or read book Mathematical Analysis Approximation Theory and Their Applications written by Themistocles M. Rassias and published by Springer. This book was released on 2016-06-03 with total page 745 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for graduate students, researchers, and engineers in mathematics, optimization, and economics, this self-contained volume presents theory, methods, and applications in mathematical analysis and approximation theory. Specific topics include: approximation of functions by linear positive operators with applications to computer aided geometric design, numerical analysis, optimization theory, and solutions of differential equations. Recent and significant developments in approximation theory, special functions and q-calculus along with their applications to mathematics, engineering, and social sciences are discussed and analyzed. Each chapter enriches the understanding of current research problems and theories in pure and applied research.

Book Progress in Approximation Theory and Applicable Complex Analysis

Download or read book Progress in Approximation Theory and Applicable Complex Analysis written by Narendra Kumar Govil and published by Springer. This book was released on 2017-04-03 with total page 541 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current and historical research methods in approximation theory are presented in this book beginning with the 1800s and following the evolution of approximation theory via the refinement and extension of classical methods and ending with recent techniques and methodologies. Graduate students, postdocs, and researchers in mathematics, specifically those working in the theory of functions, approximation theory, geometric function theory, and optimization will find new insights as well as a guide to advanced topics. The chapters in this book are grouped into four themes; the first, polynomials (Chapters 1 –8), includes inequalities for polynomials and rational functions, orthogonal polynomials, and location of zeros. The second, inequalities and extremal problems are discussed in Chapters 9 –13. The third, approximation of functions, involves the approximants being polynomials, rational functions, and other types of functions and are covered in Chapters 14 –19. The last theme, quadrature, cubature and applications, comprises the final three chapters and includes an article coauthored by Rahman. This volume serves as a memorial volume to commemorate the distinguished career of Qazi Ibadur Rahman (1934–2013) of the Université de Montréal. Rahman was considered by his peers as one of the prominent experts in analytic theory of polynomials and entire functions. The novelty of his work lies in his profound abilities and skills in applying techniques from other areas of mathematics, such as optimization theory and variational principles, to obtain final answers to countless open problems.

Book Approximation with Positive Linear Operators and Linear Combinations

Download or read book Approximation with Positive Linear Operators and Linear Combinations written by Vijay Gupta and published by Springer. This book was released on 2017-06-27 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic overview of approximation by linear combinations of positive linear operators, a useful tool used to increase the order of approximation. Fundamental and recent results from the past decade are described with their corresponding proofs. The volume consists of eight chapters that provide detailed insight into the representation of monomials of the operators Ln , direct and inverse estimates for a broad class of positive linear operators, and case studies involving finite and unbounded intervals of real and complex functions. Strong converse inequalities of Type A in terminology of Ditzian–Ivanov for linear combinations of Bernstein and Bernstein–Kantorovich operators and various Voronovskaja-type estimates for some linear combinations are analyzed and explained. Graduate students and researchers in approximation theory will find the list of open problems in approximation of linear combinations useful. The book serves as a reference for graduate and postgraduate courses as well as a basis for future study and development.

Book Approximation By Complex Bernstein And Convolution Type Operators

Download or read book Approximation By Complex Bernstein And Convolution Type Operators written by Sorin G Gal and published by World Scientific. This book was released on 2009-08-11 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The monograph, as its first main goal, aims to study the overconvergence phenomenon of important classes of Bernstein-type operators of one or several complex variables, that is, to extend their quantitative convergence properties to larger sets in the complex plane rather than the real intervals. The operators studied are of the following types: Bernstein, Bernstein—Faber, Bernstein-Butzer, q-Bernstein, Bernstein-Stancu, Bernstein-Kantorovich, Favard-Szász-Mirakjan, Baskakov and Balázs-Szabados.The second main objective is to provide a study of the approximation and geometric properties of several types of complex convolutions: the de la Vallée Poussin, Fejér, Riesz-Zygmund, Jackson, Rogosinski, Picard, Poisson-Cauchy, Gauss-Weierstrass, q-Picard, q-Gauss-Weierstrass, Post-Widder, rotation-invariant, Sikkema and nonlinear. Several applications to partial differential equations (PDEs) are also presented.Many of the open problems encountered in the studies are proposed at the end of each chapter. For further research, the monograph suggests and advocates similar studies for other complex Bernstein-type operators, and for other linear and nonlinear convolutions.

Book Quaternionic Approximation

Download or read book Quaternionic Approximation written by Sorin G. Gal and published by Springer. This book was released on 2019-04-12 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the extensions to the quaternionic setting of some of the main approximation results in complex analysis. It also includes the main inequalities regarding the behavior of the derivatives of polynomials with quaternionic cofficients. With some few exceptions, all the material in this book belongs to recent research of the authors on the approximation of slice regular functions of a quaternionic variable. The book is addressed to researchers in various areas of mathematical analysis, in particular hypercomplex analysis, and approximation theory. It is accessible to graduate students and suitable for graduate courses in the above framework.

Book Lectures on Complex Approximation

Download or read book Lectures on Complex Approximation written by GAIER and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of General Relativity, after its invention by Albert Einstein, remained for many years a monument of mathemati cal speculation, striking in its ambition and its formal beauty, but quite separated from the main stream of modern Physics, which had centered, after the early twenties, on quantum mechanics and its applications. In the last ten or fifteen years, however, the situation has changed radically. First, a great deal of significant exper~en tal data became available. Then important contributions were made to the incorporation of general relativity into the framework of quantum theory. Finally, in the last three years, exciting devel opments took place which have placed general relativity, and all the concepts behind it, at the center of our understanding of par ticle physics and quantum field theory. Firstly, this is due to the fact that general relativity is really the "original non-abe lian gauge theory," and that our description of quantum field in teractions makes extensive use of the concept of gauge invariance. Secondly, the ideas of supersymmetry have enabled theoreticians to combine gravity with other elementary particle interactions, and to construct what is perhaps the first approach to a more finite quantum theory of gravitation, which is known as super gravity.

Book Mathematica Balkanica

Download or read book Mathematica Balkanica written by and published by . This book was released on 2002 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Classical Topics in Complex Function Theory

Download or read book Classical Topics in Complex Function Theory written by Reinhold Remmert and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: An ideal text for an advanced course in the theory of complex functions, this book leads readers to experience function theory personally and to participate in the work of the creative mathematician. The author includes numerous glimpses of the function theory of several complex variables, which illustrate how autonomous this discipline has become. In addition to standard topics, readers will find Eisenstein's proof of Euler's product formula for the sine function; Wielandts uniqueness theorem for the gamma function; Stirlings formula; Isssas theorem; Besses proof that all domains in C are domains of holomorphy; Wedderburns lemma and the ideal theory of rings of holomorphic functions; Estermanns proofs of the overconvergence theorem and Blochs theorem; a holomorphic imbedding of the unit disc in C3; and Gausss expert opinion on Riemanns dissertation. Remmert elegantly presents the material in short clear sections, with compact proofs and historical comments interwoven throughout the text. The abundance of examples, exercises, and historical remarks, as well as the extensive bibliography, combine to make an invaluable source for students and teachers alike

Book Complex Analysis and Potential Theory

Download or read book Complex Analysis and Potential Theory written by Andre Boivin and published by American Mathematical Soc.. This book was released on 2012 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the proceedings volume of an international conference entitled Complex Analysis and Potential Theory, which was held to honor the important contributions of two influential analysts, Kohur N. GowriSankaran and Paul M. Gauthier, in June 2011 at the Centre de Recherches Mathematiques (CRM) in Montreal. More than fifty mathematicians from fifteen countries participated in the conference. The twenty-four surveys and research articles contained in this book are based on the lectures given by some of the most established specialists in the fields. They reflect the wide breadth of research interests of the two honorees: from potential theory on trees to approximation on Riemann surfaces, from universality to inner and outer functions and the disc algebra, from branching processes to harmonic extension and capacities, from harmonic mappings and the Harnack principle to integration formulae in $\mathbb {C}^n$ and the Hartogs phenomenon, from fine harmonicity and plurisubharmonic functions to the binomial identity and the Riemann hypothesis, and more. This volume will be a valuable resource for specialists, young researchers, and graduate students from both fields, complex analysis and potential theory. It will foster further cooperation and the exchange of ideas and techniques to find new research perspectives.

Book Mathematics Without Boundaries

Download or read book Mathematics Without Boundaries written by Panos M. Pardalos and published by Springer. This book was released on 2014-09-16 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume consists of chapters written by eminent scientists and engineers from the international community and present significant advances in several theories, methods and applications of an interdisciplinary research. These contributions focus on both old and recent developments of Global Optimization Theory, Convex Analysis, Calculus of Variations, Discrete Mathematics and Geometry, as well as several applications to a large variety of concrete problems, including applications of computers to the study of smoothness and analyticity of functions, applications to epidemiological diffusion, networks, mathematical models of elastic and piezoelectric fields, optimal algorithms, stability of neutral type vector functional differential equations, sampling and rational interpolation for non-band-limited signals, recurrent neural network for convex optimization problems and experimental design. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical and Engineering subjects and especially to graduate students who search for the latest information.

Book An Introduction to Classical Complex Analysis

Download or read book An Introduction to Classical Complex Analysis written by R.B. Burckel and published by Birkhäuser. This book was released on 2012-12-06 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an attempt to cover some of the salient features of classical, one variable complex function theory. The approach is analytic, as opposed to geometric, but the methods of all three of the principal schools (those of Cauchy, Riemann and Weierstrass) are developed and exploited. The book goes deeply into several topics (e.g. convergence theory and plane topology), more than is customary in introductory texts, and extensive chapter notes give the sources of the results, trace lines of subsequent development, make connections with other topics, and offer suggestions for further reading. These are keyed to a bibliography of over 1,300 books and papers, for each of which volume and page numbers of a review in one of the major reviewing journals is cited. These notes and bibliography should be of considerable value to the expert as well as to the novice. For the latter there are many references to such thoroughly accessible journals as the American Mathematical Monthly and L'Enseignement Mathématique. Moreover, the actual prerequisites for reading the book are quite modest; for example, the exposition assumes no prior knowledge of manifold theory, and continuity of the Riemann map on the boundary is treated without measure theory.

Book Approximation by Bounded Analytic Functions

Download or read book Approximation by Bounded Analytic Functions written by Joseph Leonard Walsh and published by . This book was released on 1957 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Handbook of Complex Analysis

Download or read book Handbook of Complex Analysis written by Reiner Kuhnau and published by Elsevier. This book was released on 2004-12-09 with total page 876 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geometric Function Theory is that part of Complex Analysis which covers the theory of conformal and quasiconformal mappings. Beginning with the classical Riemann mapping theorem, there is a lot of existence theorems for canonical conformal mappings. On the other side there is an extensive theory of qualitative properties of conformal and quasiconformal mappings, concerning mainly a prior estimates, so called distortion theorems (including the Bieberbach conjecture with the proof of the Branges). Here a starting point was the classical Scharz lemma, and then Koebe's distortion theorem. There are several connections to mathematical physics, because of the relations to potential theory (in the plane). The Handbook of Geometric Function Theory contains also an article about constructive methods and further a Bibliography including applications eg: to electroxtatic problems, heat conduction, potential flows (in the plane). · A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane).

Book Second Edmonton Conference on Approximation Theory

Download or read book Second Edmonton Conference on Approximation Theory written by Zeev Ditzian and published by American Mathematical Soc.. This book was released on 1983 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Second Edmonton Conference on Approximation Theory, held in Edmonton, Alberta, June 7-11, 1982, was devoted to Approximation Theory and related topics, including spline approximation, computational problems, complex and rational approximation, and techniques from harmonic analysis and the theory of interpolation of operators. In conformity with the requirements of this series, this volume consists of refereed papers by a selection of the invited speakers. The conference was sponsored by the Canadian Mathematical Society and supported by grants from the Natural Sciences and Engineering Research Council of Canada and the University of Alberta.

Book Interpolation and Approximation by Rational Functions in the Complex Domain

Download or read book Interpolation and Approximation by Rational Functions in the Complex Domain written by J. L. Walsh and published by American Mathematical Soc.. This book was released on 1935-12-31 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present work is restricted to the representation of functions in the complex domain, particularly analytic functions, by sequences of polynomials or of more general rational functions whose poles are preassigned, the sequences being defined either by interpolation or by extremal properties (i.e. best approximation). Taylor's series plays a central role in this entire study, for it has properties of both interpolation and best approximation, and serves as a guide throughout the whole treatise. Indeed, almost every result given on the representation of functions is concerned with a generalization either of Taylor's series or of some property of Taylor's series--the title ``Generalizations of Taylor's Series'' would be appropriate.