Download or read book Journal of Econometrics written by and published by . This book was released on 1993 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Journal of Econometrics is designed to serve as an outlet for important new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with estimation and other methodological aspects of the application of statistical inference to economic data, as well as papers dealing with the application of econometric techniques to substantive areas of economics. Econometric research in the traditional divisions of the discipline or in the newly developing areas of social experimentation are decidedly within the range of the Journal's interests.
Download or read book Parameter Estimation and Inverse Problems written by Richard C. Aster and published by Academic Press. This book was released on 2005-01-11 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preface -- 1. Introduction -- 2. Linear Regression -- 3. Discretizing Continuous Inverse Problems -- 4. Rank Deficiency and Ill-Conditioning -- 5. Tikhonov Regularization -- 6. Iterative Methods -- 7. Other Regularization Techniques -- 8. Fourier Techniques -- 9. Nonlinear Regression -- 10. Nonlinear Inverse Problems -- 11. Bayesian Methods -- Appendix A: Review of Linear Algebra -- Appendix B: Review of Probability and Statistics -- Appendix C: Glossary of Notation -- Bibliography -- IndexLinear Regression -- Discretizing Continuous Inverse Problems -- Rank Deficiency and Ill-Conditioning -- Tikhonov Regularization -- Iterative Methods -- Other Regularization Techniques -- Fourier Techniques -- Nonlinear Regression -- Nonlinear Inverse Problems -- Bayesian Methods.
Download or read book Statistics Econometrics and Forecasting written by Arnold Zellner and published by Cambridge University Press. This book was released on 2004-02-19 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on two lectures presented as part of The Stone Lectures in Economics series, Arnold Zellner describes the structural econometric time series analysis (SEMTSA) approach to statistical and econometric modeling. Developed by Zellner and Franz Palm, the SEMTSA approach produces an understanding of the relationship of univariate and multivariate time series forecasting models and dynamic, time series structural econometric models. As scientists and decision-makers in industry and government world-wide adopt the Bayesian approach to scientific inference, decision-making and forecasting, Zellner offers an in-depth analysis and appreciation of this important paradigm shift. Finally Zellner discusses the alternative approaches to model building and looks at how the use and development of the SEMTSA approach has led to the production of a Marshallian Macroeconomic Model that will prove valuable to many. Written by one of the foremost practitioners of econometrics, this book will have wide academic and professional appeal.
Download or read book Journal of Economics written by Rene Garcia and published by . This book was released on 2000 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Bayesian Analysis in Econometrics and Statistics written by Arnold Zellner and published by Edward Elgar Publishing. This book was released on 1997 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a collection of the author's contributions to the philosophy, theory and application of Bayesian analysis as it relates to statistics, econometrics, and economics. It shows how Bayesians have helped researchers and analysts to become more effective in learning from data and making decisions. Bayesian and non-Bayesian approaches are compared in several papers.
Download or read book Working Paper Series written by and published by . This book was released on 1998 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Journal of Economic Literature written by and published by . This book was released on 1990 with total page 1272 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Computational Ecology written by Wenjun Zhang and published by World Scientific. This book was released on 2010 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the complexity and non-linearity of most ecological problems, artificial neural networks (ANNs) have attracted attention from ecologists and environmental scientists. This book provides readers with knowledge on algorithms, programs, and applications of ANNs in ecology. It proposes computational ecology.
Download or read book Data Driven Strategies written by Wang Jianhong and published by CRC Press. This book was released on 2023-03-31 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: A key challenge in science and engineering is to provide a quantitative description of the systems under investigation, leveraging the noisy data collected. Such a description may be a complete mathematical model or a mechanism to return controllers corresponding to new, unseen inputs. Recent advances in the theories are described in detail, along with their applications in engineering. The book aims to develop model-free system analysis and control strategies, i.e., data-driven control from theoretical analysis and engineering applications based only on measured data. The study aims to develop system identification, and combination in advanced control theory, i.e., data-driven control strategy as system and controller are generated from measured data directly. The book reviews the development of system identification and its combination in advanced control theory, i.e., data-driven control strategy, as they all depend on measured data. Firstly, data-driven identification is developed for the closed-loop, nonlinear system and model validation, i.e., obtaining model descriptions from measured data. Secondly, the data-driven idea is combined with some control strategies to be considered data-driven control strategies, such as data-driven model predictive control, data-driven iterative tuning control, and data-driven subspace predictive control. Thirdly data-driven identification and data-driven control strategies are applied to interested engineering. In this context, the book provides algorithms to perform state estimation of dynamical systems from noisy data and some convex optimization algorithms through identification and control problems.
Download or read book Greedy Approximation written by Vladimir Temlyakov and published by Cambridge University Press. This book was released on 2011-09-08 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first book on greedy approximation gives a systematic presentation of the fundamental results. It also contains an introduction to two hot topics in numerical mathematics: learning theory and compressed sensing. Nonlinear approximation is becoming increasingly important, especially since two types are frequently employed in applications: adaptive methods are used in PDE solvers, while m-term approximation is used in image/signal/data processing, as well as in the design of neural networks. The fundamental question of nonlinear approximation is how to devise good constructive methods (algorithms) and recent results have established that greedy type algorithms may be the solution. The author has drawn on his own teaching experience to write a book ideally suited to graduate courses. The reader does not require a broad background to understand the material. Important open problems are included to give students and professionals alike ideas for further research.
Download or read book Bayesian Probability Theory written by Wolfgang von der Linden and published by Cambridge University Press. This book was released on 2014-06-12 with total page 653 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the basics to the forefront of modern research, this book presents all aspects of probability theory, statistics and data analysis from a Bayesian perspective for physicists and engineers. The book presents the roots, applications and numerical implementation of probability theory, and covers advanced topics such as maximum entropy distributions, stochastic processes, parameter estimation, model selection, hypothesis testing and experimental design. In addition, it explores state-of-the art numerical techniques required to solve demanding real-world problems. The book is ideal for students and researchers in physical sciences and engineering.
Download or read book Dissertation Abstracts International written by and published by . This book was released on 1983 with total page 548 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Model Calibration and Parameter Estimation written by Ne-Zheng Sun and published by Springer. This book was released on 2015-07-01 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: This three-part book provides a comprehensive and systematic introduction to these challenging topics such as model calibration, parameter estimation, reliability assessment, and data collection design. Part 1 covers the classical inverse problem for parameter estimation in both deterministic and statistical frameworks, Part 2 is dedicated to system identification, hyperparameter estimation, and model dimension reduction, and Part 3 considers how to collect data and construct reliable models for prediction and decision-making. For the first time, topics such as multiscale inversion, stochastic field parameterization, level set method, machine learning, global sensitivity analysis, data assimilation, model uncertainty quantification, robust design, and goal-oriented modeling, are systematically described and summarized in a single book from the perspective of model inversion, and elucidated with numerical examples from environmental and water resources modeling. Readers of this book will not only learn basic concepts and methods for simple parameter estimation, but also get familiar with advanced methods for modeling complex systems. Algorithms for mathematical tools used in this book, such as numerical optimization, automatic differentiation, adaptive parameterization, hierarchical Bayesian, metamodeling, Markov chain Monte Carlo, are covered in details. This book can be used as a reference for graduate and upper level undergraduate students majoring in environmental engineering, hydrology, and geosciences. It also serves as an essential reference book for professionals such as petroleum engineers, mining engineers, chemists, mechanical engineers, biologists, biology and medical engineering, applied mathematicians, and others who perform mathematical modeling.
Download or read book An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems written by Luis Tenorio and published by SIAM. This book was released on 2017-07-06 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inverse problems are found in many applications, such as medical imaging, engineering, astronomy, and geophysics, among others. To solve an inverse problem is to recover an object from noisy, usually indirect observations. Solutions to inverse problems are subject to many potential sources of error introduced by approximate mathematical models, regularization methods, numerical approximations for efficient computations, noisy data, and limitations in the number of observations; thus it is important to include an assessment of the uncertainties as part of the solution. Such assessment is interdisciplinary by nature, as it requires, in addition to knowledge of the particular application, methods from applied mathematics, probability, and statistics. This book bridges applied mathematics and statistics by providing a basic introduction to probability and statistics for uncertainty quantification in the context of inverse problems, as well as an introduction to statistical regularization of inverse problems. The author covers basic statistical inference, introduces the framework of ill-posed inverse problems, and explains statistical questions that arise in their applications. An Introduction to Data Analysis and Uncertainty Quantification for Inverse Problems?includes many examples that explain techniques which are useful to address general problems arising in uncertainty quantification, Bayesian and non-Bayesian statistical methods and discussions of their complementary roles, and analysis of a real data set to illustrate the methodology covered throughout the book.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1991 with total page 1460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Download or read book Multivariate Density Estimation written by David W. Scott and published by John Wiley & Sons. This book was released on 2015-03-12 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Clarifies modern data analysis through nonparametric density estimation for a complete working knowledge of the theory and methods Featuring a thoroughly revised presentation, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition maintains an intuitive approach to the underlying methodology and supporting theory of density estimation. Including new material and updated research in each chapter, the Second Edition presents additional clarification of theoretical opportunities, new algorithms, and up-to-date coverage of the unique challenges presented in the field of data analysis. The new edition focuses on the various density estimation techniques and methods that can be used in the field of big data. Defining optimal nonparametric estimators, the Second Edition demonstrates the density estimation tools to use when dealing with various multivariate structures in univariate, bivariate, trivariate, and quadrivariate data analysis. Continuing to illustrate the major concepts in the context of the classical histogram, Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition also features: Over 150 updated figures to clarify theoretical results and to show analyses of real data sets An updated presentation of graphic visualization using computer software such as R A clear discussion of selections of important research during the past decade, including mixture estimation, robust parametric modeling algorithms, and clustering More than 130 problems to help readers reinforce the main concepts and ideas presented Boxed theorems and results allowing easy identification of crucial ideas Figures in color in the digital versions of the book A website with related data sets Multivariate Density Estimation: Theory, Practice, and Visualization, Second Edition is an ideal reference for theoretical and applied statisticians, practicing engineers, as well as readers interested in the theoretical aspects of nonparametric estimation and the application of these methods to multivariate data. The Second Edition is also useful as a textbook for introductory courses in kernel statistics, smoothing, advanced computational statistics, and general forms of statistical distributions.